首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This work describes the synthesis of cis-[Pt(C[triple bond]CPh)2(Hdmpz)2] (1) and its use as a precursor for the preparation of homo- and heteropolynuclear complexes. Double deprotonation of compound 1 with readily available M(I) (M = Cu, Ag, Au) or M(II) (M = Pd, Pt) species affords the discrete hexanuclear clusters [{PtM2(mu-C[triple bond]CPh)2(mu-dmpz)(2)}(2)] [M = Cu (2), Ag (3), Au (4)], in which both "Pt(C[triple bond]CPh)2(dmpz)(2)" fragments are connected by four d(10) metal centers, and are stabilized by alkynyl and dimethylpyrazolate bridging ligands, or the trinuclear complexes [Pt(mu-C[triple bond]CPh)2(mu-dmpz)(2){M(C/\P)}2] (M = Pd (5), Pt (6); C/\P = CH(2)-C(6)H(4)-P(o-tolyl)2-kappaC,P), respectively. The X-ray structures of complexes 1-4 and 6 are reported. The X-ray structure of the platinum-copper derivative 2 shows that all copper centers exhibit similar local geometry being linearly coordinated to a nitrogen atom and eta(2) to one alkynyl fragment. However in the related platinum-silver (3) and platinum-gold (4) derivatives the silver and gold atoms present three different coordination environments. The complexes have been studied by absorption and emission spectroscopy. The hexanuclear complexes exhibit bright luminescence in the solid state and in fluid solution (except 4 in the solid state at 298 K). Dual long-lived emission is observed, being clearly resolved in low-temperature rigid media. The low-energy emission is ascribed to MLM'CT Pt(d)/pi(C[triple bond]CPh)-->Pt(p(z))/M'(sp)/pi*(C[triple bond]CPh) modified by metal-metal interactions whereas the high-energy emission is tentatively attributed to an emissive state derived from dimethylpyrazolate-to-metal (d(10)) LM'CT transitions pi(dmpz)-->M'(d(10)).  相似文献   

3.
The oxidation of the pyrazolate bridged cyclic PtII trimer, [Pt3(mu-pz)6] (1), in the presence of bromide ion gave a deep blue mixed-valent Pt(II,III,III) complex, [Pt3Br2(mu-pz)6] (2). The structural analysis of 2 disclosed that the complex has localized Pt--Pt bond. Our theoretical calculations revealed that the HOMO and LUMO of Pt3 (II,III,III) species mainly consists of (dsigma-dsigma) and (dsigma-dsigma)* orbitals, respectively, and the origin of deep blue color of the bromo complex, 2, arises from the (dsigma-dsigma)-->(dsigma-dsigma)* transition. Unique fluxional behavior was observed due to valence-detrapping of 2 in solution. The activation parameters of the valence-detrapping of 2 obtained by Eyring analyses were DeltaH(not equal)=37(2) kJ mol(-1) and DeltaS(not equal)=-67(7) J mol(-1) K(-1).  相似文献   

4.
5.
6.
7.
The topology of many modifications of elemental gallium is reflected in the large variety of metalloid Ga clusters that have been isolated as intermediates on the way from the metastable molecular GaX species (X=Cl, Br, I) by means of disproportionation to the bulk metal. Herein, we report the synthesis and characterization of the first metalloid cluster anion [Ga(18)(PtBu(2))(10)](3-) with the singular core topology that resembles the gallium high-pressure modification Ga-II. The stabilization of the cluster anion through ion-pair contacts with a chainlike "Li(4)Br(2) backbone" is discussed. Furthermore, the compound is discussed in context of the other metalloid clusters Ga(18)R(8) and Ga(22)R(8) (R=SitBu(3)) and their structural relation to the elemental modifications Ga-III and beta-Ga, respectively.  相似文献   

8.
9.
Recent developments have helped to extend the repertoire of mixed-valent ruthenium and osmium complexes beyond conventional systems. This extension has been achieved by using sophisticated ligands and by creating more variegated coordination patterns. The strategies employed include the use of multidentate ligands (which give rise to multinuclear and chelate complexes) and the use several redox active components (non-innocent ligands and oxidation-state ambivalence). The results offer enhanced chemical insight into metal-ligand electron-transfer situations and suggest that mixed-valent materials may eventually be exploited in molecular electronics and molecular computing.  相似文献   

10.
1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthene) (dpp-bian) stabilizes gallium-gallium and zinc-gallium bonds (compounds 1-3). The compound [(dpp-bian)Ga-Ga(dpp-bian)] (2) was prepared by the reaction of GaCl3 with K3[dpp-bian] and the heterometallic [(dpp-bian)Zn-Ga(dpp-bian)] (3) was prepared by a simple one-pot reaction of [{(dpp-bian)ZnI}(2)] with GaCl3 and K4[dpp-bian]. In contrast to [(dpp-bian)Zn-Zn(dpp-bian)] (1) and 3, compound 2 is ESR silent, thus proving the dianionic character of both dpp-bian ligands. The solution ESR spectrum of 3 reveals the coupling of an unpaired electron with the gallium nuclei (69)Ga and (71)Ga (A((69)Ga)=0.97, A((71)Ga)=1.23 mT), thus confirming the presence of Zn-Ga bonds in solution. According to the results of the X-ray crystal structure analyses the metal-metal bond lengths in 2 (2.3598(3) A) and 3 (2.3531(8) A) are close to that found in 1 (2.3321(2) A). The electronic structures of compounds 2 and 3 were studied by DFT (B3 LYP/6-31G* level). The metal-metal pi bond in 2 is mainly formed by overlap of the p orbitals of Ga in the HOMO and HOMO-1, the latter showing a stronger interaction. The s and p orbitals of Ga overlap in the deeper located HOMO-17 producing a Ga-Ga sigma bond. In contrast to the Zn-Zn bond in 1, which has 95 % s character, the NBO (natural bond order) analysis of 2 reveals 67.8 % s, 32.0 % p, and 0.2 % d character for the Ga-Ga bond. Compound 3 has a doublet electronic ground state. The unpaired electron occupies the alpha HOMO-1 localized at the Zn-containing fragment. The Ga-Zn bond is mainly formed by overlap of the metal orbitals in the alpha HOMO-6 and beta HOMO-5. According to the results of the NBO analysis, the Zn wave functions are responsible for 28.7 % of the Zn-Ga bond, with 96.7 % s, 1.0 % p, and 2.3 % d character.  相似文献   

11.
12.
13.
14.
15.
16.
Protonation across the metal-metal bond in the complexes [(CO)(2)M(mu-dppm)(mu-PtBu(2))(mu-H)M(CO)(2)] (M=Fe or Ru, dppm=Ph(2)PCH(2)PPh(2)) induces M-M bond shortening of up to about 0.05 A. DFT calculations on simplified iron models reproduce this trend well. Conversely, the computations show that the M-M distance in the dimer [{Cp*Ir(CO)}(2)] lengthens with two consecutive protonations, but there are no crystal structure determinations to highlight the effects on the Ir-Ir bond. DFT calculations and the analogous cobalt system confirm that the transformation of a two-electron, two-center (2e-2c) bond into a 2e-3c bond is accompanied by the predicted elongation. An MO analysis indicated similar nature and evolution of the M-M bonding these cases. In particular, the HOMOs of the mono-hydrido cations [Cp(CO)M(mu-H)M(CO)Cp](+) (M=Ir, Co) have evident M-M bent-bond character, and hence subsequent protonation invariably causes a decrease in the bond index. The Fe(2) and Co(2) systems have also been analyzed with the quantum theory of atoms in molecules (QTAIM) method, but in no case was an M-M bond critical point located unless an artificially shorter M-M distance was imposed. However, the trends for the atoms-in-molecules (AIM) bond delocalization indexes delta(M-M) confirm the overall M-M bond weakening on protonation. In conclusion, all the computational results for the iron system indicate that the paradigm of a direct correlation between bond strength and distance is not always applicable. This is attributable to a very flat potential energy surface and various competing effects imposed by the bridging ligands.  相似文献   

17.
18.
The reaction of a potential mono(nucleobase) model adduct of cisplatin, cis-[Pt(NH(3))(2)(1-MeC-N3)(H(2)O)](2+) (6; 1-MeC: 1-methylcytosine), with the electrophile [Pd(en)(H(2)O)(2)](2+) (en: ethylenediamine) at pH approximately 6 yields a kinetic product X which is likely to be a dinuclear Pt,Pd complex containing 1-MeC(-)-N3,N4 and OH bridges, namely cis-[Pt(NH(3))(2)(1-MeC(-)-N3,N4)(OH)Pd(en)](2+). Upon addition of excess Ag(+) ions, conversion takes place to form a thermodynamic product, which, according to (1)H NMR spectroscopy and X-ray crystallography, is dominated by a mu-NH(2) bridge between the Pt(II) and Pd(II) centers. X-ray crystallography reveals that the compound crystallizes out of solution as a dodecanuclear complex containing four Pt(II), four Pd(II), and four Ag(+) entities: [{Pt(2)(1-MeC(-)-N3,N4)(2)(NH(3))(2)(NH(2))(2)(OH)Pd(2)(en)(2)Ag}(2){Ag(H(2)O)}(2)](NO(3))(10) 6 H(2)O (10) is composed of a roughly planar array of the 12 metal ions, in which the metal ions are interconnected by mu-NH(2) groups (between Pt and Pd centers), mu-OH groups (between pairs of Pt atoms), and metal-metal donor bonds (Pt-->Ag, Pd-->Ag). The four 1-methylcytosinato ligands, which are stacked pairwise, as well as the four NH(3) ligands and parts of the en rings, are approximately perpendicular to the metal plane. Two of the four Ag ions (Ag2, Ag2') of 10 are labile in solution and show the expected behavior of Ag(+) ions in water, that is, they are readily precipitated as AgCl by Cl(-) ions. The resulting pentanuclear complex [Pt(2)Pd(2)Ag(1-MeC(-))(2)(NH(2))(2)(OH)(NH(3))(2)(en)(2)](NO(3))(4)7 H(2)O (11) largely maintains the structural features of one half of 10. The other two Ag(+) ions (Ag1, Ag1') of 10 are remarkably unreactive toward excess NaCl. In fact, the pentanuclear complex [Pt(2)Pd(2)AgCl(1-MeC(-))(2)(NH(2))(2)(OH)(NH(3))(2)(en)(2)](NO(3))(3)4.5 H(2)O (12), obtained from 10 with excess NaCl, displays a Cl(-) anion bound to the Ag center (2.459(3) A) and is thus a rare case of a crystallized "AgCl molecule".  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号