首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymeric materials containing different fillers and/or reinforcements are frequently used for applications in which friction and wear are critical issues. This overview describes how to design high temperature-resistant thermoplastics, e.g., filled with carbon fibers and internal lubricants, for operation under low friction and wear at elevated temperatures as sliding elements in, e.g., textile drying machines. Further information will be given on the systematic development of continuous fiber/polymer composites with high wear resistance, and on attempts for the prediction of their load-bearing capacity using a finite element approach. Finally, the application of such composites in thermoplastic filament-wound journal-bearings is discussed.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Institute of Composite Materials (IVW), University of Kaiserslautern, D-67663 Kaiserslautern, Germany. Published in Mekhanika Kompozitnykh Materialov, Vol. 34, No. 6, pp. 717–732, November–December, 1998.  相似文献   

2.
Fillers have always played an important role in the plastics industry. Filled polymers form a specific class of composites, which are tending to replace many traditional materials. Various kinds of organic fillers are used. The experimental study of such nonconventional organic and inorganic fillers obtained from agricultural waste is presented to modify the properties of thermoplastics, such as pVC, HDPE, LDPE, and ABS. The properties obtained by using these fillers alone and in combinations show very interesting results, which are tabulated. The use of organic fillers should help lower the cost of many plastic products required in the building and agricultural industries.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Maharashtra Institute of Technology, Pune, India. Published in Mekhanika Kompozitnykh Materialov, Vol. 34, No. 5, pp. 651–663, September–October, 1998.  相似文献   

3.
A new approach to the generalized self-consistent method [1,2] has been developed for problems of the statistical mechanics of composites with composite or hollow inclusions. The approach can reduce the problem of predicting the effective elastic properties of composites to a simpler averaged problem of a single, composite, or hollow inclusion with inhomogeneous elastic surrounding in a homogeneous effective elastic medium. The problem of predicting the effective elastic properties of composites with unidirectional hollow fibers or hollow spherical inclusions are studied by using the new approach.Submitted to the 10th International Conference on Mechanics of Composite Materials, April 20–23, 1998, Riga, Latvia.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 2, pp. 173–183, March–April, 1998.  相似文献   

4.
Fiber-reinforced flexible composites are extensively used for different kinds of applications, for example, tubes, drive belts, tires, and coated fabrics. Typical for these materials are matrix materials allowing large strain deformation and reinforcement structures allowing bending. Apart from the tensile strength and limited bending stiffness, damage resistance and ductile-brittle transition characteristics are discussed. The tensile strength usually follows the rule of mixture. The mode of fracture and damage resistance, however, strongly depend on penetration of the matrix into the fiber bundles, textile structure, and internal friction. Models for the work of fracture and the ductile-to-brittle fracture transition are discussed.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Published in Mekhanika Kompozitnykh Materialov, Vol. 34, No. 6, pp. 747–760, November–December, 1998.  相似文献   

5.
Wood-filled thermoplastic composites   总被引:1,自引:0,他引:1  
Different physical properties of wood-filled thermoplastic materials produced by a special mixing and extrusion process are examined. The results show that the wood content and the kind of plastics are the main parameters that control the physical properties of composites. In general, wood-filled thermoplastic materials exhibit mechanical properties comparable to those of customary wood fiber products, i.e., medium density fiberboard (MDF); however, they show distinctly better behavior than the MDF and natural wood after exposure to moisture.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Universität Kassel, Institut für Werkstofftechnik, Kunstoff-und Recyclingtechnik, Mönchebergstraße 3, 34109 Kassel, Germany. Published in Mekhanika Kompozitnykh Materialov, Vol. 34, No. 6, pp. 795–802, November–December, 1998.  相似文献   

6.
The effect of technological parameters of processing and surface treatment of carbon fibers on the mechanical properties of carbon fiber-reinforced plastics (CFRPs) was investigated. The copolymer of 1,3,5-trioxane with 1,3-dioxolane was used as the polymer matrix, and medium-modulus hydrated cellulose Ural LO-24 carbon fibers served as the reinforcing filler. The polymer matrix was mixed with the carbon fibers by the method of combined extrusion. The dependence of the mechanical properties of CFRPs on the technological parameters of screw-disk extrusion was studied. It was found that the properties of the composites were greatly affected by the size of the working disk gap, the disk rotation rate, and the temperature in the zone of normal stresses. The surface of the carbon fibers was activated with atmospheric oxygen in the temperature range of 450–600°C, with mass loss of the fibers no greater than 3–4%. A 30–40% increase in the mechanical properties of the CFRPs was achieved. A decrease in the melt index of the 1,3,5-trioxane copolymer with 1,3-dioxolane reinforced with oxidized carbon fibers was observed, which should be taken into account in processing the composites into products. Introduction of carbon fibers in the 1,3,5-trioxane copolymer with 1,3-dioxolane allows us to increase the wear resistance and decrease the friction coefficient, which makes it possibile to use these materials in the friction units of machines and mechanisms, such as plain bearings, gears, and flange packings.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Ukrainian State University of Chemical Technology, Dnepropetrovsk, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 5, pp. 673–682, September–October, 1998.  相似文献   

7.
Data have been obtained for the structural calculation of the effect of moisture on the elastic characteristics of organoplastics from the properties of components. The distribution of moisture between the fiber and matrix — the components of a unidirectional composite — is considered. The elastic properties of the fiber are determined by an inverse calculation using the experimental dependences of the composite and matrix on moisture. The moisture effect on the properties of the materials is taken into account with influence functions, which differ by more than 25% for various characteristics. The results can be used for calculating the elastic properties of composites with various reinforcement schemes and at the nonequilibrium distribution of the moisture concentration in an actual environment.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Institute of Polymer Mechanics, Riga, LV-1006, Latvia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 4, pp. 525–530, July–August, 1998.  相似文献   

8.
A numerical-experimental method for the identification of mechanical properties of laminated polymeric composites from the experimental results is being developed. For the first time, it is proposed to use the method of experiment planning to solve the identification (inverse) problems. The basic idea of the approach is that simple mathematical models are determined only from information on the response of a structure in reference points of the design. Therefore, a significant reduction in the calculation of the identification functional (about 50–100 times) can be achieved in comparison with the conventional methods of minimization. Examples of the numerical identification of the elastic properties of the laminated composites from the measured eigenfrequencies of plates are discussed.Submitted to the 10th International Conference on Mechanics of Composite Materials, April 20–23, 1998, Riga, Latvia.Institute of Computer Analysis of Structures, Riga Technical University, Riga LV-1058 Latvia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 1, pp. 3–16, January–February, 1998.  相似文献   

9.
The macroscopic failure of composite materials is preceded by complex multilevel processes accompanied by accumulation and localization of damaged centers and formation of a failure cluster. Therefore, the study of these mechanisms is one of the basic problems for the mechanics of modern composite materials used in aerospace engineering. The formation of a theory of the stable postcritical deformation of the work-softening media is considered. The pseudo-plastic deformation affected by structural damage of granular composites is investigated within the framework of the considered two-level structurally phenomenological model of heterogeneous media. The stable evolution of the interconnected processes is accompanied by stress redistributions, partial or complete unloading, and strain or damage localization that are one of the main causes of implementation of the postcritical deformation stage. The numerical calculation results of inelastic deformation and failure of the periodic unidirectional fiber-reinforced composites are presented under conditions of the displacement-controlled transverse proportional loading mode. The main mechanisms of the work-softening behavior for the indicated type of materials are described in the macro-homogeneous stress-strain states. Macroscopically, the failure of heterogeneous media as a result of postcritical deformation and the loss of stability of damage accumulation depends on the stiffness of the loading system. When a deformable body is fixed on the closed surface with sufficiently but not infinitely large coefficients of stiffness, it is possible to observe the equilibrium development of the localized volumes of work-softening and damage. The constitutive equations for the work-softening isotropic, transverse isotropic, and orthotropic media are presented. The effect of the loading system on the stability of deformation, damage accumulation, and failure under monotone and nonmonotone triaxial loading was studied. The growth of failure strains with increase in stiffness of the loading system and unequal resistance of heterogeneous body are registered and investigated. A preventive unloading method is offered for the mathematical modeling of the damage accumulation during the testing of the materials on the servo-controlled systems. The displacement-controlled mode is simulated by a series of soft loading and unloading cycles. The detected phenomenon of failure where the unloading leads to stress-strain diagrams with a negative slope of the descending branch was not found either in the displacement or stress-controlled monotone loading mode.Submitted to the 10th International Conference on Mechanics of Composite Materials, April 20–23, 1998, Riga, Latvia.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 2, pp. 234–250, March–April, 1998.  相似文献   

10.
The relationship between adhesion and bond strength in thin fiber-polymer matrix systems was studied. Adhesive interaction in composite materials was analyzed within the scope of thermodynamic and molecular-kinetic theories of adhesion. Methods based on wetting are shown to give poor estimation of the work of adhesion in fiber-polymer systems, which is due to their low sensibility to donor-acceptor interactions taking place at the interface. Important information about the acidity and basicity of contacting surfaces can be obtained by using inverse gas chromatography to investigate the thermodynamics of adsorption. The calculation of the work of adhesion including acid-base interactions shows the best agreement with the bond strength in the same systems. The local (ultimate) interfacial shear strength is proposed to characterize the quality of fiber-matrix bonding. Analysis of the relationship between the work of adhesion and adhesive pressure for various systems allowed us to differentiate the dispersive and acid-base components of the local bond strength as well as to estimate distances characteristic of these twoTypes of interaction. For dispersive forces, our estimation gives 7–8Å, i.e., of an order of magnitude of the center-to-center distance for van der Waals interactions. At the same time, the acid-baseInteractions have a characteristic range of 4–5Å and can be attributed to hydrogen bonding. The agreement between the calculated distances and literature data is evidence for the applicability of the proposed method to the analysis of the adhesive interaction in fibrous polymer composites.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 4, pp. 431–446, July–August, 1998.  相似文献   

11.
The electrical properties of fiber-metal composites with anisotropic components were averaged within the framework of a regular structure model. The corresponding current problem was reduced to a system of two integral equations with elliptical kernels. The effective electrical conductivity tensor of such materials was defined as several functionals based on integral equation solutions for the boundary problem. The calculation results are given.Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 2, pp. 263–268, March–April, 1997.  相似文献   

12.
The paper presents an experimental investigation of fracture characteristics of composite materials. The post-peak response of the load-crack opening displacement of notched specimens is used to evaluate the fracture energy associated with progressive matrix damage and crack growth. Effects of fiber orientation and other geometric characteristics on fracture parameters are studied. The load versus crack opening displacement as well as crack length, fracture toughness, and energy versus the number of loading cycles are obtained for different specimens. Based on the experimental results of this study, concepts of the fracture mechanics are applied to evaluate the evolution of fracture toughness and energy.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Department of Mechanical & Industrial Engineering, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2. Published in Mekhanika Kompozitnykh Materialov, Vol. 34, No. 3, pp. 323–332, May–June, 1998.  相似文献   

13.
The possibility of using pressure relaxation of melted polymers for the investigation of the structure of three types of polymers and their compositions and the analysis of the change of their molecular characteristics during aging is shown.Kazan State Technological University, Tatarstan, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 4, pp. 531–538, July–August, 1998.  相似文献   

14.
The electron-donor properties of polymers with conjugation systems (PCS) and their capability of forming -complexes with metals is of interest in relation to adhesion. Small amounts (0.01–0.1%) of substances with polyconjugation systems (polydiphenylbutadiene, polyphenylacetylene, and copolymers of naphthalene and anthracene with benzene) increase the adhesion between aluminum and polymers used as electrical insulation coatings (polyesters, polyimides, and their derivatives). With optimum PCS dosage, the resistance to peeling rises by 15–38%.Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Translated from Mekhanika Polimerov, No. 2, pp. 365–367, March–April, 1974.  相似文献   

15.
Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.Submitted to the 10th International Conference on Mechanics of Composite Materials (Riga, April 20–23, 1998).Ukrainian State University of Chemical Technology, Dnepropetrovsk, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 6, pp. 845–850, November–December, 1997.  相似文献   

16.
Published material dealing with the dynamic behavior of ductile elastic materials is reviewed. The methods used up unitl now for the investigation of the mechanical characteristics of materials under the conditions of uniaxial stretching and wave propagation are evaluated. There are also presented the basic results of the experimental studies carried out in order to elucidate the effect of rate on the mechanical properties of elastomers, vitrified polymers, glass-reinforced plastics, and crystalline polymers. A review is presented of the experimental and theoretical studies dealing with wave propagation in ductileelastic rods.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Institute of Problems of Mechanics, Academy of Sciences of the USSR, Moscow. Translated from Mekhanika Polimerov, No. 2, pp. 326–338, March–April, 1970.  相似文献   

17.
Pressure relaxation was examined in the cylinder of an MPT Monsanto processability tester after stopping the piston. The experimental function of the pressure drop F(t) was smoothed over and approximated by cubic splines. The spectra of pressure relaxation times (SPRT) were obtained according to the method of Schwarzl-Staverman. The SPRT method served well for estimating the spectra of the molecular-mass distribution (MMD) of polymers close in their physical sense to the SPRT. The correlation of the characteristic relaxation times and average molecular mass of ethylene-propylene rubbers and polyethylenes obtained by gel permeation chromatography was approximated by optimum models used for calculating the the molecular mass of rubbers according to the measurement results of the relaxation pressure of melts. The SPRT and characteristic relaxation times were used to analyze the significant technical properties of compositions based on polyethylene and rubber. The SPRT method was used to examine the failure of the cure network of butyl rubber and the dependence of the mechanical properties of thermoplastic elastomers on the molecular features of the decomposite.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Kazan State Technological University, Tatarstan, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 5, pp. 691–698, September–October, 1998.  相似文献   

18.
Conditions of the formation of structure-sensitive liquid flowable media based on 1.5 and 10% aqueous solutions of polyvinyl alcohol containing silicotungstic acid and water-soluble carboxy-methylcellulose in the form of its potassium salt (Na-CMC) are examined. Rheological, optical, and dielectric relaxation methods revealed the formation of several types of interpolymer complexes in the examined liquid flowable media. This leads to the formation of associates and an increase in the molecular mobility of the macromolecules and their fragments. The structure and properties of the complexes depend on the composition of the media as well as the method of introducing polyacids. It was found that it was possible to control the structure of such solutions by applying a mechanical of magnetic field. The compositions obtained can be used for producing anisotropic light-, electric-, and heat-sensitive film materials, as well as sensors of different types.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Institute of General and Inorganic Chemistry, Belarus Academy of Sciences, Minsk, Belarus. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 3, pp. 413–424, May–June, 1998.  相似文献   

19.
One of the most promising ways of tackling the problems of cushioning the response of an aircraft under dynamic and shock influences and reducing aerothermoelastic strains is examined. This is the use of composite materials in the airframe and engine. The characteristics of the composites most developed at the present time and of ordinary construction materials are compared. Examples are given of the use of modern composites in aircraft and their engines.Professor N. E. Zhukovskii Moscow Air Force Engineering Academy. Translated from Mekhanika Polimerov, No. 1, pp. 105–112, January–February, 1972.  相似文献   

20.
A refined solution is constructed for thermoelastic expansion of spherical fiber composites with a three-dimensional structure on the basis of existing hypotheses about the longitudinal state of fibers in a matrix strengthened with spherical inclusions. Relationships defining the dependence in explicit form of thermoelastic coefficients on structural parameters are obtained in analytical form. Thermal expansion coefficients for composites with cubic symmetry are discussed in detail.Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 2, pp. 251–257, March–April, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号