首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.  相似文献   

2.
悬臂输流管道的运动分岔现象和混沌运动   总被引:15,自引:1,他引:15  
研究受约束悬臂输流管道的稳定性和运动分岔问题.在静态与动态失稳区域边界上的一个交叉点附近,用理论分析的方法详细研究了该系统可能发生的复杂运动和运动分岔现象.在动态失稳区域内发现了输流管道的概周期运动和由于概周期运动环面破裂而导致混沌的现象.理论分析结果与数值模拟结果相吻合.  相似文献   

3.
A nonlinear, time-varying dynamic model for right-angle gear pair systems is formulated to analyze the existence of sub-harmonics and chaotic motions. This pure torsional gear pair system is characterized by its time-varying excitation, clearance, and asymmetric nonlinearities as well. The period-1 dynamic motions of the same system were obtained by solving the dimensionless equation of gear motion using an enhanced multi-term harmonic balance method (HBM) with a modified discrete Fourier transform process and the numerical continuation method presented in another paper by the authors. Here, the sub-harmonics and chaotic motions are studied using the same solution technique. The accuracy of the enhanced multi-term HBM is verified by comparing its results to the solutions obtained using the more computational intensive direct numerical integration method. Due to its inherent features, the enhanced multi-term HBM cannot predict the chaotic motions. However, the frequency ranges where chaotic motions exist can be predicted using the stability analysis of the HBM solutions. Parametric studies reveal that the decrease in drive load or the increase of kinematic transmission error (TE) can result in more complex gear dynamic motions. Finally, the frequency ranges for sub-harmonics and chaotic motions, as a function of TE and drive load, are obtained for an example case.  相似文献   

4.
This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.  相似文献   

5.
Resonant chaotic motions of a simply supported rectangular thin plate with parametrically and externally excitations are analyzed using exponential dichotomies and an averaging procedure for the first time. The formulas of the rectangular thin plate are derived by a von Karman type equation and the Galerkin’s approach. The critical condition to predict the onset of chaotic motions for the full system is obtained by developing a Melnikov function containing terms from the non-hyperbolic mode. We prove that the non-hyperbolic mode of the thin plate does not affect the critical condition for the occurrence of chaotic motions in the resonant case. Simulations also show that the chaotic motions of the hyperbolic subsystem are shadowed by the chaotic motions for the full system of the rectangular thin plate.  相似文献   

6.
This work studies the response of a weakly non-linear vibratory system with two degrees-of-freedom when the system is excited near resonance. The two linear modes are in 1:3 internal resonance. The asymptotic method of averaging and direct numerical integration are used to obtain the response of the system. Over a range of excitation frequencies and modal damping, the averaged equations in slow time are found to possess limit cycle solutions. These solutions undergo period doubling bifurcations to chaotic solutions. The averaging theory then implies the existence of amplitude modulated motions, the exact nature of modulations not being well defined. Numerical simulation of the original vibratory two degree-of-freedom system shows that the system does undergo amplitude modulated motions. For sufficiently large damping, only periodic modulations arise in the form of a 2-torus. For lower damping, the 2-torus can undergo doubling and ultimate destruction to result in a chaotic attractor. Poincare sections of steady state solutions are used to characterize the various types of amplitude modulated motions.  相似文献   

7.
This paper studies interactions of pipe and fluid and deals with bifurcations of a cantilevered pipe conveying a steady fluid, clamped at one end and having a nozzle subjected to nonlinear constraints at the free end. Either the nozzle parameter or the flow velocity is taken as a variable parameter. The discrete equations of the system are obtained by the Ritz-Galerkin method. The static stability is studied by the Routh criteria. The method of averaging is employed to examine the analytical results and the chaotic motions. Three critical values are given. The first one makes the system lose the static stability by pitchfork bifurcation. The second one makes the system lose the dynamical stability by Hopf bifurcation. The third one makes the periodic motions of the system lose the stability by doubling-period bifurcation. The project supported by the Science Foundation of Tongji University and Tongji University and National Key Projects of China under Grant No. PD9521907.  相似文献   

8.
Dynamics of a multi-DOF beam system with discontinuous support   总被引:2,自引:0,他引:2  
This paper deals with the long term behaviour of periodically excited mechanical systems consisting of linear components and local nonlinearities. The particular system investigated is a 2D pinned-pinned beam, which halfway its length is supported by a one-sided spring and excited by a periodic transversal force. The linear part of this system is modelled by means of the finite element method and subse1uently reduced using a Component Mode Synthesis method. Periodic solutions are computed by solving a two-point boundary value problem using finite differences or, alternatively, by using the shooting method. Branches of periodic solutions are followed at a changing design variable by applying a path following technique. Floquet multipliers are calculated to determine the local stability of these solutions and to identify local bifurcation points. Also stable and unstable manifolds are calculated. The long term behaviour is also investigated by means of standard numerical time integration, in particular for determining chaotic motions. In addition, the Cell Mapping technique is applied to identify periodic and chaotic solutions and their basins of attraction. An extension of the existing cell mapping methods enables to investigate systems with many degress of freedom. By means of the above methods very rich complex dynamic behaviour is demonstrated for the beam system with one-sided spring support. This behaviour is confirmed by experimental results.  相似文献   

9.
In this paper, we propose a parametrically excited pendulum with irrational nonlinearity which comprises a simple pendulum linked by a linear spring under base excitation. This parametric vibration system exhibits bistable state and discontinuous characteristics due to the geometry configuration. For small oscillations, this system can be described by Mathieu equation coupled with SD (Smooth and Discontinuous) oscillator whose dynamic response is examined analytically by using the averaging method in both smooth and discontinuous case. Numerical simulations are carried out to demonstrate the complicated dynamic behavior of multiple periodic motions and different types of chaotic motions.  相似文献   

10.
This paper studies chaotic motions in quasi-integrable Hamiltonian systems with slow-varying parameters under both harmonic and noise excitations. Based on the dynamic theory and some assumptions of excited noises, an extended form of the stochastic Melnikov method is presented. Using this extended method, the homoclinic bifurcations and chaotic behavior of a nonlinear Hamiltonian system with weak feed-back control under both harmonic and Gaussian white noise excitations are analyzed in detail. It is shown that the addition of stochastic excitations can make the parameter threshold value for the occurrence of chaotic motions vary in a wider region. Therefore, chaotic motions may arise easily in the system. By the Monte-Carlo method, the numerical results for the time-history and the maximum Lyapunov exponents of an example system are finally given to illustrate that the presented method is effective.  相似文献   

11.
随机激励对软弹簧杜芬振子动力学的分散作用   总被引:4,自引:0,他引:4  
郭云松  甘春标  叶敏 《应用力学学报》2005,22(2):285-287,i012
讨论了有界噪声激励对软弹簧杜芬振子的倍周期分岔至混沌运动的影响。利用蒙特卡罗方法,通过对系统受侵蚀安全盆的变化状况进行了观察,并由此对后继动力学分析的初始点进行了选取。系统的相图、倍周期分岔图以及庞加莱映射图等方面的数值结果表明,外加随机激励的作用往往掩盖原确定性系统内在的规则运动,对原确定性系统的运动具有较典型的分散作用,可延缓系统的倍周期分岔,也可使得系统内在随机行为提前发生,即可使得系统更容易出现混沌运动。  相似文献   

12.
具有局部非线性动力系统周期解及稳定性方法   总被引:17,自引:1,他引:17  
对于具有局部非线性的多自由度动力系统,提出一种分析周期解的稳定性及其分岔的方法该方法基于模态综合技术,将线性自由度转换到模态空间中,并对其进行缩减,而非线性自由度仍保留在物理空间中在分析缩减后系统的动力特性时,基于Newmark法的预估-校正-局部迭代的求解方法,与Poincaré映射法相结合,推导出一种确定周期解,并使用Floquet乘子判定其稳定性及分岔的方法  相似文献   

13.
The loss of stability of the equilibrium position of a double pendulum with follower force loading and elastic end support is studied. At a special parameter combination the linearized system is characterized by a zero root and a pure imaginary pair of eigenvalues. Therefore, the stability problem is a complicated critical case in the sense of Liapunov and requires a non-linear analysis. A complete post-bifurcation investigation of the coupled divergence and flutter motions is given by means of centre manifold theory, and bifurcation diagrams. Among the different types of motions even the appearance of chaotic behavior is shown.  相似文献   

14.
Local flow variation (LFV) method of non-linear time series analysis is applied to develop a chaotic motion-based atomic force microscope (AFM). The method is validated by analyzing time series from a simple numerical model of a tapping mode AFM. For both calibration and measurement procedures the simulated motions of the AFM are nominally chaotic. However, the distance between a tip of the AFM and a sample surface is still measured accurately. The LFV approach is independent of any particular model of the system and is expected to be applicable to other micro-electro-mechanical system sensors where chaotic motions are observed or can be introduced.  相似文献   

15.
Electromagnetic and mechanical forces are main reasons resulting in vibrations in hydraulic generating set. The non-symmetric air-gap between the rotor and stator creates an attraction force called unbalanced magnetic pull (UMP). The UMP can produce large oscillations which will be dangerous to the machines. In this paper, the nonlinear dynamic characteristics of a rotor-bearing system with rub-impact for hydraulic generating set under the UMP are studied. The rubbing model is established based on the classic impact theory. Through the numerical calculation, the excitation current, mass eccentricity, stiffness of shaft and radial stiffness of stator are used as control parameters to investigate their effect on the system, by means of bifurcation diagrams, Poincaré maps, trajectories and frequency spectrums. Various nonlinear phenomena including periodic, quasi-periodic and chaotic motions are observed. The results reveal that the UMP has significant influence in the response of the rotor system that the continuous increase in the excitation current induces the alternation of quasi-periodic and chaotic motions, the co-occurrence of oil whip and rub in a wide excitation range aggravates the vibration and leads to the instability of the system. In addition, the large eccentricity and radial stiffness of stator, as well as the small stiffness of shaft may lead to the occurrence of full annular rubbing while increasing the stiffness of the shaft can play an important role of suppressing the chaotic motion, reducing the vibration and improving stability of the system.  相似文献   

16.
In this paper, the dynamics of two-dimensional cantilevered flexible plates in axial flow is investigated using a fluid–structure interaction model. An additional spring support of either linear or cubic type is installed at various locations on the plate; its presence qualitatively affects the dynamics of the fluid–structure system. Without the spring, the cantilevered plate loses stability by flutter when the flow velocity exceeds a critical value; as the flow velocity increases further, the system dynamics is qualitatively the same: the plate undergoes symmetric limit cycle oscillations with increasing amplitude. With a linear spring, a state of static buckling is added to the dynamics. Rich nonlinear dynamics can be observed when a cubic spring is considered; the plate may be stable and buckled, and it may undergo either symmetric or asymmetric limit cycle oscillations. Moreover, when the flow velocity is sufficiently high, the plate may exhibit chaotic motions via a period-doubling route.  相似文献   

17.
In this paper, we use the asymptotic perturbation method based on the Fourier expansion and the temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported rectangular plate made of functionally graded materials (FGMs) subjected to a through-thickness temperature field together with parametric and external excitations. Material properties are assumed to be temperature-dependent. Based on the Reddy’s third-order plate theory, the governing equations of motion for the plate are derived using the Hamilton’s principle. The Galerkin procedure is employed to obtain a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms. The resonant case considered here is 1:2 internal resonance, principal parametric resonance-1/2 subharmonic resonance. Based on the averaged equation in polar coordinate form, the stability of steady state solutions is analyzed. The phase portrait, waveform and Poincaré map are used to analyze the periodic and chaotic motions of the FGM rectangular plate. It is found that the FGM rectangular plate exhibits the chaotic motions under certain circumstances. It is seen that the nonlinear dynamic responses of the FGM rectangular plate are more sensitive to transverse excitation. The excitation force can be used as a controlling factor which can change the response of the FGM rectangular plate from periodic motion to the chaotic motion.  相似文献   

18.
This paper investigates the dynamics of the giant swing motions of an underactuated three-link gymnastic robot moving in a vertical plane by means of dynamic delayed feedback control (DDFC). DDFC, being one of useful methods to overcome the so-called odd number limitation in controlling a chaotic discrete-time system, is extended to control a continuous-time system such as a 3-link gymnastic robot with passive joint. Meanwhile, a way to calculate the error transfer matrix and the input matrix which are necessary for discretization is proposed, based on a Poincaré section which is defined to regard the target system as a discrete-time system. Moreover, the stability of the closed-loop system by the proposed control strategy is discussed. Furthermore, some numerical simulations are presented to show the effectiveness in controlling a chaotic motion of the 3-link gymnastic robot to a periodic giant swing motion.  相似文献   

19.
This paper addresses the problem of synchronization of chaotic fractional-order systems with different orders of fractional derivatives. Based on the stability theory of fractional-order linear systems and the idea of tracking control, suitable controllers are correspondingly proposed for two cases: the first is synchronization between two identical chaotic fractional-order systems with different fractional orders, and the other is synchronization between two nonidentical fractional-order chaotic systems with different fractional orders. Three numerical examples illustrate that fast synchronization can be achieved even between a chaotic fractional-order system and a hyperchaotic fractional-order system.  相似文献   

20.
Melnikov方法在输流管混沌运动研究中的应用   总被引:1,自引:0,他引:1  
对基础简谐运动激励下两端固定输流管道的混沌运动进行了研究,推导出了系统的运动方程,确定了系统存在的平衡点及其稳定性,计算出了未扰系统的同宿轨道,并利用Melnikov方法得到了系统发生混沌运动时参数需满足的临界条件,同时还利用相平面图和:Poincare映射等方法对管道的混沌运动进行了数值模拟,通过比较发现,由Melnikov方法确定的临界参数值要稍小于数值模拟中首次观察到混沌运动时对应的临界值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号