首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The transition-metal-catalyzed [2+2+2] cyclotrimerization of a diyne and an alkyne provides a convergent route to highly-substituted aromatic rings. This reaction possesses distinct drawbacks, especially low chemo- and regioselectivities, which hamper its application in combinatorial synthesis. These problems have been solved by the development of solid-supported [2+2+2]-cycloaddition reactions. If conducted on a solid-support, this reaction enables rapid combinatorial access to diverse sets of carbo- and heterocyclic small-molecule arrays. The scope of this methodology has been investigated by examining different immobilization strategies, different diyne precursors, and a variety of functionalized alkyne reaction partners. Overall, isoindoline, phthalan, and indan libraries were assembled in good to excellent yields and with high purities.  相似文献   

2.
The first efficient intermolecular reaction of gold carbene intermediates generated via gold-catalyzed alkyne oxidation has been realized using nitriles as both the reacting partner and the reaction solvent, offering a generally efficient synthesis of 2,5-disubstituted oxazoles with broad substrate scope. The overall reaction is a [2 + 2 + 1] annulation of a terminal alkyne, a nitrile, and an oxygen atom from an oxidant. The reaction conditions are exceptionally mild, and a range of functional groups are easily tolerated. With complex and/or expensive nitriles, only 3 equiv could be sufficient to achieve serviceable yields in the absence of any solvent and using only 1 mol % BrettPhosAuNTf(2) as the catalyst.  相似文献   

3.
A novel variation of the rhodium catalyzed [4 + 2] reaction is reported. A catalyst system that forms an eight-membered ring product from the incorporation of an alkyne into a dienyne is discussed. The products are formed with high diastereoselectivity and in good yield. The highest yields are obtained with alkynes that possess either an oxygen or nitrogen in the propargyl position. Examples are presented where the tether between the alkyne and the diene contains three or four atoms.  相似文献   

4.
β‐Nitro styrene reacts with nonstabilized azomethine ylides generated from isatin/ninhydrin with sarcosine, resulting in the formation of a series of spiroxindolo nitro pyrrolidines, and spiroindano nitro pyrrolidines, respectively, in good yields. It was noted that in a one‐pot 3+2 cycloaddition reaction, the azomethine ylides generated from isatin and ninhydrin have reacted with the β‐nitro styrenes regiochemically in opposite ways.  相似文献   

5.
[reactions: see text] A rhodium complex of N-heterocyclic carbene (NHC) has been developed for intra- and intermolecular [4 + 2] and intramolecular [5 + 2] cycloaddition reactions. This is the first use of a transition-metal NHC complex in a Diels-Alder-type reaction. For the intramolecular [4 + 2] cycloaddition reactions, all the dienynes studied were converted to their corresponding cycloadducts in 91-99% yields within 10 min. Moreover, up to 1900 turnovers have been obtained for the intramolecular [4 + 2] cycloaddition at 15-20 degrees C. For the intermolecular [4 + 2] cycloadditions, high yields (71-99%) of the corresponding cycloaddition products were obtained. The reaction time and yield were highly dependent upon the diene and the dienophile. For the intramolecular [5 + 2] cycloaddition reactions, all the alkyne vinylcyclopropanes studied were converted to their corresponding cycloadducts in 91-98% yields within 10 min. However, the catalytic system was not effective for an intermolecular [5 + 2] cycloaddition reaction.  相似文献   

6.
[reaction: see text] In this paper, we wish to report the intramolecular [2 + 2 + 2] cocyclotrimerization of nitrilediynes catalyzed by the CoI2(dppe)/Zn system at 80 degrees C in CH3CN. Under these reaction conditions, various highly substituted nitrilediynes having steric conjunction at the alpha and beta positions to a nitrile group and a bulkier substitution at the terminal carbon of alkyne undergo [2 + 2 + 2] cocylotrimerization to afford tetra- and pentacyclic pyridine derivatives in good to excellent yields.  相似文献   

7.
Intermolecular [2 + 2 + 1] cocyclization of isocyanates, alkynes, and CO (1 atm) proceeded smoothly in the presence of a catalytic amount of Ru3(CO)12 (3.3 mol %) in mesitylene at 130 degrees C for 3 approximately 42 h to give a variety of polysubstituted maleimides in excellent yields with high selectivity. The reaction may involve an azaruthenacyclopentenone intermediate derived from oxidative cyclization of an isocyanate and an alkyne on an active ruthenium species.  相似文献   

8.
In the presence of a catalytic amount of Cp*RuCl(cod), 1,6-diynes chemoselectively reacted with monoalkynes at ambient temperature to afford the desired bicyclic benzene derivatives in good yields. A wide variety of diynes and monoynes containing functional groups such as ester, ketone, nitrile, amine, alcohol, sulfide, etc. can be used for the present ruthenium catalysis. The most significant advantage of this protocol is that the cycloaddition of unsymmetrical 1,6-diynes with one internal alkyne moiety regioselectively gave rise to meta-substituted products with excellent regioselectivity. Completely intramolecular alkyne cyclotrimerization was also accomplished using triyne substrates to obtain tricyclic aromatic compounds fused with 5-7-membered rings. A ruthenabicycle complex relevant to these cyclotrimerizations was synthesized from Cp*RuCl(cod) and a 1,6-diyne possessing phenyl terminal groups, and its structure was unambiguously determined by X-ray analysis. The intermediary of such a ruthenacycle intermediate was further confirmed by its reaction with acetylene, giving rise to the expected cycloadduct. The density functional study on the cyclotrimerization mechanism elucidated that the cyclotrimerization proceeds via oxidative cyclization, producing a ruthenacycle intermediate and subsequent alkyne insertion initiated by the formal [2 + 2] cycloaddition of the resultant ruthenacycle with an alkyne.  相似文献   

9.
Ru-catalyzed [2 + 2] cycloadditions between norbornadiene and alkynyl halides were found to occur in moderate to good yields (32-89%). The presence of the halide moiety greatly enhances the reactivity of the alkyne component in the cycloaddition and can be transformed into a variety of products that are difficult or impossible to obtain via direct cycloaddition. [reaction: see text]  相似文献   

10.
An intermolecular [2+2] cycloaddition reaction between an alkyne and an allene is reported. In the presence of a cobalt(I)/diphosphine catalyst, a near equimolar mixture of the alkyne and allene is converted into a 3‐alkylidenecyclobutene derivative in good yield with high regioselectivity. The reaction tolerates a variety of internal alkynes and mono‐ or disubstituted allenes bearing various functional groups. The reaction is proposed to involve regioselective oxidative cyclization of the alkyne and allene to form a 4‐alkylidenecobaltacyclopentene intermediate, with subsequent C?C reductive elimination.  相似文献   

11.
Pirali T  Tron GC  Zhu J 《Organic letters》2006,8(18):4145-4148
By combining three appropriately designed simple substrates, a programmed sequence involving an alpha-isocyano acetamide-based three-component reaction followed by a copper-catalyzed intramolecular [3+2] cycloaddition of alkyne and azide took place to afford complex macrocycles in moderate to good yields. One macrocycle and two heterocycles were produced with concurrent formation of five chemical bonds in this operationally simple process.  相似文献   

12.
The first example of a transition metal-catalyzed hetero-[5 + 2] cycloaddition reaction is described. Use of cyclopropyl imines as five-atom components, an alkyne as a two-carbon component, and a Rh(I) catalyst enables a new route to dihydroazepines. This new hetero-[5 + 2] cycloaddition works well with aldimines, ketimines, and with substituted cyclopropanes and affords the desired dihydroazepines in excellent yields as single regioisomers. Use of serial imine formation/aza-[5 + 2] cycloaddition generates the desired dihydroazepines in one operation from three commercially available starting materials. The reaction has been scaled to give gram quantities of dihydroazepine.  相似文献   

13.
Polyalkyne and enediyne azamacrocycles are prepared from arenesulfonamides and various alkyne and alkene derivatives either under basic or neutral conditions. The new family of macrocyclic substrates is tested in the [2+2+2] cycloaddition reaction. Several catalysts are used for the cycloisomerization reaction, and their enantioinduction is evaluated as appropriate. The effect of the structural features of the macrocycles, namely the ring size, substituents in precise positions and the number and type of unsaturations, on the [2+2+2] cycloaddition reaction has also been studied.  相似文献   

14.
A rapid access to the central 4,5,6-tricyclic core of 4,5,6-trinems has been achieved by employing the alkyne [2+2+2]-cyclotrimerization as the key and final reaction in the synthesis.  相似文献   

15.
An enantioselective intramolecular [2+2+2] cycloaddition of 2-aminophenol-tethered triynes and diyne-nitriles proceeded using the chiral Rh catalysts, and tripodal cyclophanes and pyridinophanes with a long ansa chain (up to [16]pyridinophane) were obtained in acceptable yield with high to almost perfect ee. In the reaction of triynes, we elucidated that the oxygen atom at the alkyne terminus is essential for the excellent enantioselectivity. For the construction of cage-type molecule, the choice of rigid tether, which connects 1,6-diyne moiety with a side carbon chain having alkyne or cyano group on its terminus, was important, and 8-amino-2-naphthol moiety was also a preferable tether.  相似文献   

16.
A cobalt-catalyzed alkyne [2 + 2 + 2] cycloaddition reaction has been applied to polymerizations yielding linear polymers via selective cross-cyclotrimerization of yne-diyne monomers, which occurs in a chain-growth manner. Additionally, through control of the alkyne reactivity of the two monomers, this method was efficiently applied to the spontaneous block copolymerization of their mixture. Here we present the proposed mechanism of the catalyst transfer process of this cycloaddition polymerization.  相似文献   

17.
It has been established that an electron-deficient cyclopentadienyl rhodium(III) (CpERhIII) complex catalyzes the oxidative and decarboxylative [2+1+2+1] cycloaddition of benzoic acids with diynes through C≡C triple bond cleavage, leading to fused naphthalenes. This cyclotrimerization is initiated by directed ortho C−H bond cleavage of a benzoic acid, and the subsequent regioselective alkyne insertion and decarboxylation produce a five-membered rhodacycle. The electron-deficient nature of the CpERhIII complex promotes reductive elimination giving a cyclobutadiene–rhodium(I) complex rather than the second intermolecular alkyne insertion. The oxidative addition of the thus generated cyclobutadiene to rhodium(I) (formal C≡C triple bond cleavage) followed by the second intramolecular alkyne insertion and reductive elimination give the corresponding [2+1+2+1] cycloaddition product. The synthetic utility of the present [2+1+2+1] cycloaddition was demonstrated in the facile synthesis of a donor–acceptor [5]helicene and a hemi-hexabenzocoronene by a combination with the chemoselective Scholl reaction.  相似文献   

18.
Enantioselective cycloaddition using chiral transition metal catalysts is an atom-economical and efficient synthetic tool for the construction of chiral carbo- and heterocyclic skeletons. This short account discloses our recent results of inter- and intramolecular enantioselective [2 + 2 + 2] cycloadditions of alkyne and/or alkene moiety(ies). Chiral iridium complexes catalyzed the alkyne trimerization for the generation of axial chirality(ies), and chiral rhodium ones catalyzed alkyne-alkyne-alkene cyclization for the generation of a quaternary carbon including spirocyclic system.  相似文献   

19.
The ruthenium-catalyzed [2 + 2] cycloadditions of 7-substituted norbornadienes with an alkyne have been investigated. The cycloadditions were found to be highly regio- and stereoselective, giving only the anti-exo cycloadducts as the single regio- and stereoisomers in good yields. The results on the relative rate of different 7-substituted norbornadienes in the Ru-catalyzed [2 + 2] cycloadditions with an alkyne indicated that the reactivity of the alkene component decreases dramatically as the alkene becomes more electron deficient. Ab initio computational studies on the ruthenium-catalyzed [2 + 2] cycloadditions provided important information about the geometries and the arrangements of the four different groups on the Ru in the initial Ru-alkene-alkyne pi-complex, 14, and in the metallacyclopentene 15. Based on our computational studies, we also found that the first carbon-carbon bond formed in the [2 + 2] cycloaddition is between the C(5) of the alkene and the C(b) (the acetylenic carbon attached to the ester group) of the alkyne 8. Our computational studies on the potential energy profiles of the cycloadditions showed that the activation energy relative to the reactants for the oxidative addition step is in the range of 9.3-9.8 kcal/mol. The activation energy relative to the metallacyclopentene for the reductive elimination step is much higher than for the oxidative addition step (in the range of 25.9-27.6 kcal/mol).  相似文献   

20.
Two new gold‐catalyzed annulations of isoxazoles with propiolates have been developed. Most isoxazoles follow an initial O attack on the alkyne to afford a [4+1] annulation product. This process results in a remarkable alkyne cleavage of initial propiolates. Unsubstituted isoxazoles proceed through an N attack step to yield formal [2+2+1]/[4+2] annulation products. These two annulation products arise initially from two seven‐membered heterocyclic intermediates, which then lead to products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号