首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of our program on biochirogenesis of homochiral peptides from racemic precursors, we report the feasibility of obtaining peptides with homochiral sequences composed of up to 25 residues of the same handedness in the polymerization of racemic valine or leucine N-carboxyanhydrides in aqueous solutions, as initiated by amines. The composition of the oligopeptides was determined by MALDI-TOF mass spectrometry, and the sequences of some of the heterochiral diastereoisomers were studied by MALDI-TOF MS/MS performed on samples in which the S enantiomers of the monomer were tagged with deuterium atoms. The process comprises several steps: 1) a Markov mechanism of asymmetric induction in the early stages of the polymerization yields libraries of racemic oligopeptides enriched with isotactic diastereoisomers, together with oligopeptide sequences containing enantiomeric blocks of homochiral residues; 2) the short peptides self-assemble into racemic colloidal architectures that serve as regio-enantioselective templates in the ensuing process of chain elongation; 3) homochiral residues of the amino acids located at the periphery of these colloidal aggregates exert efficient enantioselection, which results in the formation of long isotactic oligopeptides. The final diastereoisomeric distribution of the peptides depends upon the composition of the templates, which is determined by the concentration of the initiator. The racemic mixtures of isotactic peptides can be desymmetrized by using enantiopure methyl esters of alpha-amino acids as initiators.  相似文献   

2.
The formation of diastereoisomeric libraries of oligopeptides through the heterogeneous polymerization of racemic crystals of phenylalanine N-carboxyanhydride (PheNCA) is reported. The diastereoisomeric compositions of the oligopeptides formed on polymerization of (R,S) crystals incorporating the deuterium-tagged S enantiomer were determined by MALDI-TOF mass spectrometry. The racemic mixtures of the oligopeptides longer than pentamers are represented primarily by diastereoisomers of homochiral sequence and with peptides containing only one heterochiral repeating unit. A mechanism comprising the following three sequential steps to account for this unusual observation is proposed: 1) formation of dimers and trimers at a partially damaged liquid/solid interface, 2) chain propagation that takes place within the bulk of the crystal through a lattice-controlled "zipper-like" mechanism between homochiral molecules arranged in a head-to-tail motif to yield crystalline antiparallel beta-sheets of alternating oligopeptide chains of homochiral sequence of opposite handedness, and 3) enantiomeric cross-inhibition that results in chain termination. Induced desymmetrization of the racemic mixtures of the formed peptides was achieved by the polymerization of the mixed quasi-racemic crystals of (R)-PheNCA, ((S)-PheNCA), and (S)-ThieNCA (3-(2-thienyl)-alanine N-carboxyanhydride) of various compositions. These experiments resulted in the formation of nonracemic libraries of oligopeptides composed of homochiral chains of (R)-Phe and copolymers of randomly distributed (S)-Phe and (S)-Thie sequences. From these findings, we propose a stochastic model for the generation of libraries of nonracemic mixtures of oligopeptides from the polymerization of host (R,S)-PheNCA with racemic mixtures of other guest NCA amino acids dissolved in limited quantities in the crystal.  相似文献   

3.
A possible role that might have been played by ordered clusters at interfaces for the generation of homochiral oligopeptides under prebiotic conditions has been probed by a catalyzed polymerization of amphiphilic activated alpha-amino acids, in racemic and chiral non-racemic forms, which had self-assembled into two-dimensional (2D) ordered crystallites at the air-aqueous solution interface. As model systems we studied N(epsilon)-stearoyl-lysine thioethyl ester (C(18)-TE-Lys), gamma-stearyl-glutamic thioethyl ester (C(18)-TE-Glu), N(alpha)-carboxyanhydride of gamma-stearyl-glutamic acid (C(18)-Glu NCA) and gamma-stearyl-glutamic thioacid (C(18)-thio-Glu). According to in-situ grazing incidence X-ray diffraction measurements on the water surface, (R,S)-C(18)-TE-Lys, (R,S)-C(18)-TE-Glu, and (R,S)-C(18)-Glu-NCA amphiphiles self-assembled into ordered racemic 2D crystallites. Oligopeptides 2-12 units long were obtained at the air-aqueous solution interface after injection of appropriate catalysts into the water subphase. The experimental relative abundance of oligopeptides with homochiral sequence generated from (R,S)-C(18)-TE-Lys and (R,S)-C(18)-TE-Glu, as determined by mass spectrometry on enantioselectively deuterium-labeled samples, was found to be significantly larger than that obtained from (R,S) C(18)-thio-Glu which polymerizes randomly. An efficient chiral amplification was obtained in the polymerization of non-racemic mixtures of C(18)-Glu-NCA since the monomer molecules in the racemic 2D crystallites are oriented such that the reaction occurs between heterochiral molecules related by glide symmetry to yield heterochiral oligopeptides whereas the enantiomer in excess, in the enantiomorphous crystallites, yield oligopeptides of a single handedness.  相似文献   

4.
As part of our program on the biochirogenesis of homochiral peptides, we report the formation of racemic parallel (p) beta sheets composed of alternating R and S chains of up to 14-15 repeat units of the same handedness through the polymerisation of (R,S)-valine N-carboxyanhydride (NCA) crystals suspended in aqueous solutions of a primary amine as the initiator. The occurrence of such a lattice-controlled reaction accompanied by a reduction in volume implies the operation of a mechanism that differs from that of the common solid-state polymerisation in vinyl systems. The topotacticity of the reaction is explained through the operation of a multistep nonlinear process comprising lattice control coupled with an asymmetric induction in the formation of homochiral short peptides followed by their self-assembly into racemic p beta sheets, which operate as efficient templates in the ensuing process of enantioselective chain elongation at the polymer/crystal interface. The composition of the diastereoisomeric libraries of oligopeptides was determined by MALDI-TOF and MALDI-TOF-TOF MS analyses of the products obtained from monomers enantioselectively labelled with deuterium. The structure of the p beta sheets could be determined by initiating the polymerisation reaction with water-soluble esters of enantiopure alpha-amino acids or short peptides. The same reaction performed with the monomer crystals suspended in hexane yielded a complex mixture of diastereoisomeric oligopeptides, thus highlighting the indispensable role played by water in controlling the stereoselectivity of the reaction. By contrast, polymerisation of (R,S)-leucine NCA crystals, with a different packing arrangement that presumably does not endorse the formation of periodic peptide templates, yielded, both in aqueous and hexane suspensions, libraries of peptides dominated by heterochiral diastereoisomers.  相似文献   

5.
Wagner N  Rubinov B  Ashkenasy G 《Chemphyschem》2011,12(15):2771-2780
The origin of long homochiral biopolymers in living systems has recently been the focus of intense research. In one particular research line, scientists studied, experimentally and theoretically, chiral amplification obtained during peptide formation by polymerization of amino acid building blocks. It was suggested that processes leading to temporal or spatial separation, and thus, to the growth of homochiral polymers at the expense of their heterochiral counterparts, can explain the chirality observed in larger molecules. We introduce a simple model and stochastic simulation for the polymerization of amino acids and β-sheet formation, showing the crucial effects of the β sheets on the distributions of peptide lengths. When chiral affinities are included, racemic β sheets of alternating homochiral strands lead to the formation of chiral peptides, the isotacticity of which increases with length, consistent with previous experimental results in aqueous solutions. The tendency to form isotactic peptides is shown for both initially racemic and initially nonracemic systems, as well as for closed and open systems. We suggest that these or similar mechanisms may explain the origin of chiroselectivity in prebiotic environments.  相似文献   

6.
The feasibility of generating oligopeptides with homochiral sequence via lattice-controlled polymerization of racemic mixtures of precursor molecules that undergo spontaneous segregation into two-dimensional (2-D) enantiomorphous domains at the air-aqueous solution interface was analyzed. For model systems, we studied the polymerization reaction within 2-D crystalline domains of mixtures of (R,S)-N(epsilon)-stearoyl-thio-lysine with approximately 10% (R,S)-N(epsilon)-stearoyl-lysine, and (R,S)-N(alpha)-carboxyanhydride of N(epsilon)-stearoyl-lysine. According to in situ grazing incidence X-ray diffraction (GIXD) measurements at the air-water interface, the molecules form 2-D crystallites packing by translation symmetry only. Oligopeptides 4-6 units long were obtained at the air-solution interface after injection of an appropriate catalyst into the subphase. The course of the chemical transformations was monitored by GIXD. The distribution of the diastereoisomeric oligopeptides was determined by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF MS) mass spectrometry on samples prepared from precursor molecules enantioselectively labeled with deuterium. The experimental relative abundance of oligopeptides with homochiral sequence was found to be larger than that calculated for a theoretical random process, yielding an excess by a factor of 2.5-3.5 for the tetra- to hexapeptides. The present studies may be relevant for probing the role that might have been played by ordered clusters at interfaces for the generation of homochiral oligopeptides under prebiotic conditions.  相似文献   

7.
This communication asks whether homochiral or heterochiral interaction is preferred between enantiomeric beta-sheets and finds that homochiral pairing is strongly preferred. Interactions between beta-sheets occur widely among proteins through pairing of the hydrogen-bonding edges. Although the hydrogen-bonding edges of both l- and d-beta-sheets put forth the same pattern of hydrogen-bond donor and acceptor groups, the side chains point in opposite directions. Homochiral pairing of beta-sheets generates structures in which the pleats and side chains of adjacent beta-strands are parallel to each other, while heterochiral pairing of beta-sheets generates structures in which the pleats and side chains are antiparallel. To test which pairing is preferred, we have prepared and studied the interactions of beta-sheets 1a-d, which comprise all l-amino acids, and beta-sheets 2a-c, which comprise all d-amino acids. Previous studies in our laboratory have established that these compounds form well-defined dimers in organic solvents. In the current study, 1H NMR experiments establish that when the l-beta-sheets (1) are mixed with the enantiomeric d-beta-sheets (2), homochiral beta-sheet dimers predominate, and only small quantities of heterochiral beta-sheet dimers form. Ratios of homochiral and heterochiral dimers ranging from 95.8:4.2 to 98.5:1.5 are measured in CDCl3 at 253 K, which correspond to statistically corrected free-energy differences of 3.1-4.2 kcal/mol (0.6-0.8 kcal/mol per interacting residue). Possible explanations for the high enantioselectivity of molecular recognition between beta-sheets include favorable nonbonded contacts between the adjacent beta-strands of the homochiral beta-sheets and poor fit of the heterochiral beta-strands, which should twist in opposite directions.  相似文献   

8.
This article is concerned with the chiral amplification of oligopeptides formed in the polymerization of chiral, nonracemic mixtures of the N‐carboxyanhydride (NCA) of Leu and Glu in aqueous solution. Labeling (deuteration) of one enantiomer and reversed‐phase and normal‐phase high‐performance liquid chromatography mass spectrometry (RP‐ and NP‐HPLC/MS, respectively) were used to determine the product distribution, both with respect to oligopeptide chain length and stereoisomer distribution. Starting the polymerization with an enantiomeric excess (ee) of 20% of the L ‐enantiomer (L ‐amino acid/D ‐amino acid 6 : 4) leads to an ee of 73% at the level of the homochiral enantiomeric (Leu)5, and of 71% at the level of the homochiral enantiomeric (Glu)7. For the Leu system and in the presence of a solid support (quartz), the ee reached values of up to 100%. We argue that such amplification processes could be relevant for the chemical evolution towards single‐handedness.  相似文献   

9.
Racemic S‐ethyl thioesters of Nε‐stearoyllysine (= S‐ethyl (R,S)‐2‐amino‐6‐(stearoylamino)hexanethioate) and S‐ethyl thioesters of γ‐stearyl glutamic acid (=stearyl (R,S)‐4‐amino‐5‐(ethylsulfanyl)‐5‐oxopentanoate) self‐assemble as separated two‐dimensional crystalline monolayers within an achiral phospholipid environment of racemic 1,2‐dipalmitoylglycerol (DPG) and 1,2‐dipalmitoylglycero‐3‐phosphoethanolamine (DPPE), as demonstrated by grazing‐incidence X‐ray‐diffraction (GIXD) measurements performed on the surface of H2O. Lattice‐controlled polycondensation within these crystallites with deuterium‐enantiolabeled monomers was initiated by injecting aqueous solutions of Ag+ or I2/KI beneath the monolayers, which yielded mixtures of diastereoisomeric oligopeptides containing up to six to eight repeating units, as analyzed by MALDI‐TOF mass spectrometry. Analysis of the diastereoisomeric distribution showed an enhanced relative abundance of the oligopeptides with homochiral sequences containing three or more repeating units. Within the DPPE monolayers, the nucleophilic amino group of the phospholipid operates as an initiator of polymerization at the periphery of the monomer two‐dimensional crystallites. Enhanced relative abundance of enantiomerically enriched homochiral oligopeptides was obtained by the polycondensation of nonracemic monomers. This enhancement indicated a phase separation into racemic and enantiomorphous monomer crystallites within the phospholipid environment, although this separation could not be observed directly by GIXD. A possible role that might have been played by crystalline assemblies for the abiotic generation and amplification of oligopeptides with homochiral sequences is discussed.  相似文献   

10.
Aqueous solutions of the achiral, monomeric, nucleobase mimics (2,4,6‐triaminopyrimidine, TAP, and a cyanuric acid derivative, CyCo6) spontaneously assemble into macroscopic homochiral domains of supramolecular polymers. These assemblies exhibit a high degree of chiral amplification. Addition of a small quantity of one handedness of a chiral derivative of CyCo6 generates exclusively homochiral structures. This system exhibits the highest reported degree of chiral amplification for dynamic helical polymers or supramolecular helices. Significantly, homochiral polymers comprised of hexameric rosettes with structural features that resemble nucleic acids are formed from mixtures of cyanuric acid (Cy) and ribonucleotides (l‐, d ‐pTARC) that arise spontaneously from the reaction of TAP with the sugars. These findings support the hypothesis that nucleic acid homochirality was a result of symmetry breaking at the supramolecular polymer level.  相似文献   

11.
Intrahelical photoinduced electron transfer processes (ET) in conformationally restricted oligopeptides have been studied by nanosecond time-resolved transient spectroscopy. The helical peptides were constructed from sterically hindered alpha-aminoisobutyric acid (Aib) and two cyclic alpha-amino acids (Aib class) bearing electron acceptor and donor side chains (DkNap, ThQx). This helical backbone design provides high conformation stability, as previously demonstrated, and yields reliable 3(10)-helical architectures in solution. The forward ET between ThQx and 3DkNap is followed by a slow back ET thus giving rise to an accumulation of the charge-separated ion pairs for hundreds of nanoseconds. We demonstrate the modulation of electronic interactions by the number of intervening Aib residues separating acceptor-donor side chains and propose modifications of the peptide framework by inclusion of a non-Aib amino acid residue. These well-defined and sterically stable frameworks are suited for the precise evaluation of intrahelical electron transfer processes mediated by peptides.  相似文献   

12.
In some liquid crystal (LC) mixtures of bent-core host molecules that form helical nanofilaments (HNFs) and chiral, rod-shaped molecular guests, the spontaneous chirality of the HNFs is not influenced by the guest handedness. In other mixtures, the filaments become homochiral, responding to the handedness of the guest. We show that the important distinction between these two behaviours is the solubility of the guest material in the HNF phase. In our experiments, chiral LC mesogens doped into the HNF phase result in an enantiomeric imbalance and sometimes change the phase sequence on cooling from the isotropic melt.  相似文献   

13.
Directing the supramolecular polymerization towards a preferred type of organization is extremely important in the design of functional soft materials. Proposed herein is a simple methodology to tune the length and optical chirality of supramolecular polymers formed from a chiral bichromophoric binaphthalene by the control of enantiomeric excess (ee). The enantiopure compound gave thin fibers longer than a few microns, while the racemic mixture favored the formation of nanoparticles. The thermodynamic study unveils that the heterochiral assembly gets preference over the homochiral assembly. The stronger heterochiral binding over homochiral one terminated the elongation of fibrous assembly, thus leading to a control over the length of fibers in the nonracemic mixtures. The supramolecular polymerization driven by π–π interactions highlights the effect of the geometry of a twisted π‐core on this self‐sorting assembly.  相似文献   

14.
The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (相似文献   

15.
螯合金属离子亲和色谱法分离α-氨基酸和肽   总被引:1,自引:0,他引:1  
程慧文  邵天梦 《色谱》1997,15(5):405-407
 以SephadexG10为基质螯合二价铜离子的亲和色谱法分离α-氨基酸和肽,使之得以完全分离。对分离过程的原理进行了讨论。  相似文献   

16.
A detailed and comprehensive overview is presented about the design, modeling, and synthesis, as well as spectroscopic characterization, of a new class of beta-sheet ligands. The characteristic feature of these compounds is a peptidic chimeric structure formed from a specific combination of aminopyrazolecarboxylic acids with naturally occurring alpha-amino acids. These hybrid peptides are designed with the aid of molecular modeling to exist mainly in an extended conformation. All their hydrogen bond donors and acceptors can be aligned at the bottom face in such a way that a perfect complementarity toward beta-sheets is obtained. Thus the aminopyrazoles impart rigidity and a highly efficient DAD sequence for the recognition of whole dipeptide fragments, whereas the natural alpha-amino acids are designed to mimick recognition sites in proteins, ultimately leading to sequence-selective protein recognition. The synthetic protocols either rely upon solution phase peptide coupling with a PMB protecting group strategy or solid-phase peptide coupling based on the Fmoc strategy, using the same protecting group. In solution, a key building block was prepared by catalytic reduction of a nitropyrazolecarboxylic acid precursor. Subsequently, it was (N-1)-protected with a PMB group, and elongated by HCTU- or T3P-assisted peptide coupling with dipeptide fragments, followed by PyClop-assisted coupling with another nitropyrazolecarboxylic acid building block. Final simultaneous deprotection of all PMB groups with hot TFA completed the high-yield protocol, which works racemization-free. After preparing a similar key building block with an Fmoc protection at N-3, we developed a strategy suitable for automated synthesis of larger hybrid ligands on a peptide synthesizer. Attachment of the first amino acid to a polystyrene resin over the Sieber amide linker is followed by an iterative sequence consisting of Fmoc deprotection with piperidine and subsequent coupling with natural alpha-amino acid via HATU/HOAt. High yields of free hybrid peptides are obtained after mild acidic cleavage from the resin, followed by deprotection of the PMB groups with hot TFA. The new aminopyrazole peptide hybrid compounds were characterized by various spectroscopic measurements including CD spectra, VT, and ROESY NMR experiments. All these accumulated data indicate the absence of any intramolecular hydrogen bonds and strongly support an extended conformation in solution, ideal for docking on to solvent-exposed beta-sheets in proteins. Initial results from aggregation tests of pathological proteins with these and related ligands look extremely promising.  相似文献   

17.
Increasing attention has been devoted in the last decades to chiral chromatography, principally to high‐performance liquid chromatography techniques using a chiral stationary phase. Many chiral high‐performance liquid chromatography columns are commercially available, but, unfortunately, they are most often rather expensive. A cheap alternative to the commercial chiral columns is the dynamic‐coating procedure of a standard achiral stationary phase with a chiral selector containing both a chiral domain and a chain or a group able to tightly (but noncovalently) bind the achiral support. This is the case of Nτ‐decyl‐l ‐spinacine, already successfully employed to dynamically cover a reversed‐phase column to separate racemic mixtures of amino acids through the ligand‐exchange mechanism. In the present work, the same chiral selector is employed to separate racemic mixtures of amino acids and oligopeptides, in the absence of metal ions: no coordination complex is formed, but only electrostatic and weak nonbonding interactions between the chiral phase and the analytes are responsible for the observed enantioselectivity. The new method is simpler than the previous one, very effective in the case of aromatic amino acids and oligopeptides and also suitable for preparative purposes.  相似文献   

18.
(1)H NMR analyses of individual alpha-amino acids in their mixture were simultaneously conducted in the presence of Sm-(pdta-d(8)) in water: high regularity, promising for direct simultaneous determination of absolute configurations of each alpha-amino acids in peptide hydrolysate mixtures, was observed between absolute configuration and the induced shifts.  相似文献   

19.
A grazing‐incidence X‐ray‐diffraction (GIXD) study of the self‐assembly, on water, of nonracemic γ‐stearyl glutamic acid (pure or as a mixture with racemic or (S)‐1,2‐dipalmitoyl‐glycero‐3‐phosphoethanolamine (DPPE)) demonstrated a phase separation of the α‐amino acid amphiphile into racemic and enantiomorphous two‐dimensional crystallites within the phospholipid domains. The packing arrangements of the two α‐amino acid crystalline phases were identical to those found in the absence of DPPE and have been determined, at almost atomic resolution, by X‐ray structure‐factor calculations. By contrast, racemic and nonracemic Nε‐stearoyllysine spontaneously segregated into two‐dimensional enantiomorphous domains within the DPPE environment that induced a change in the tilt direction of the hydrocarbon chains of the α‐amino acid molecules. Phase separation of nonracemic amphiphiles, originating from preferred lateral homochiral or heterochiral intermolecular interactions, is in agreement with the formation of enantiomerically pure or enriched homochiral oligopeptides in overrepresented amounts in the polycondensation of activated nonracemic amphiphilic α‐amino acids on plain water or within phospholipid monolayers.  相似文献   

20.
A variety of homochiral alpha-amino acids have been prepared in good yield via regioselective reaction of higher order cuprates with (2S)-N-para-toluenesulfonylaziridine-2-carboxylic acid 4. The reaction was much less regioselective and low yielding when higher order cuprates were reacted with the more hindered aziridine carboxylic acid 30, the principal products being protected beta-amino acids. Reaction of lithium trimethylsilylacetylide with the aziridine acid 30, however, gave a protected alpha-amino acid which was converted to the protected isoleucine ester 37.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号