首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
利用超算符方法,通过对系统主方程以及矩阵元的求解,讨论了两个二能级原子与含Kerr介质腔色散相互作用系统中原子、光场、及复合系统的线性熵演化规律,结果表明强Kerr介质相互作用使两个原子的系统线性熵及光场线性熵产生复杂的震荡。  相似文献   

2.
Taking the density-dependent near dipole-dipole (NDD) interaction into consideration, we theoretically investigate the response of nonlinear absorption and dispersion in optically dense media of three-level atoms driven by a single-mode probe laser. The influence of the NDD effects on the absorption and dispersion spectra of the probe field is predicted via numerical calculations. It is shown that the NDD effects reduce gradually to transient absorption and amplification with the increase of the strengths of the NDD interaction, but do not change the steady-state behavior. Due to the presence of the NDD effects, steady-state absorption spectra exhibit asymmetric double-peak structure and overall shifts when a continuous-wave (cw) probe field is applied. However, frequency dispersion spectra are insensitive to them near the zero detuning.  相似文献   

3.
Taking the density-dependent near dipole-dipole (NDD) interaction into consideration, we theoretically investigate the response of nonlinear absorption and dispersion in optically dense media of three-level atoms driven by a single-mode probe laser. The influence of the NDD effects on the absorption and dispersion spectra of the probe field is predicted via numerical calculations. It is shown that the NDD effects reduce gradually to transient absorption and amplification with the increase of the strengths of the NDD interaction, but do not change the steady-state behavior.Due to the presence of the NDD effects, steady-state absorption spectra exhibit asymmetric double-peak structure and overall shifts when a continuous-wave (cw) probe field is applied. However, frequency dispersion spectra are insensitive to them near the zero detuning.  相似文献   

4.
The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration Ga As/Al Ga As semiconductor quantum dot are analytically studied with the phonon-assisted transition(PAT). It is shown that the changes among a single electromagnetically induced transparency(EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.  相似文献   

5.
The evolution of the electromagnetic field in a two-level medium occurring in a matrix with finite response time has been studied. An integrable variant of the Maxwell-Bloch equations with allowance for nonlinear dispersion is derived and solved using the inverse scattering problem. It is shown that the nonlinear dispersion caused by the finite response time of the matrix yields a new possibility of controlling soliton parameters. A particular case of the constructed model can be used to describe field pulses in the parameter domain that occurs between the regions of applicability of the quasi-monochromatic approximation and the approximation of unidirectional propagation of pulses with durations on the order of the oscillation period.  相似文献   

6.
The present paper offers the solution to the probe of the nonlinear interaction of a weak standing wave with a two-level gas in the field of a strong travelling wave. It turns out that a number of new nonlinear resonances with a homogeneous width arise on the background of linear absorption.  相似文献   

7.
Observation of large Kerr nonlinearity at low light intensities   总被引:1,自引:0,他引:1  
We report an experimental observation of large Kerr nonlinearity with vanishing linear susceptibilities in coherently prepared four-level rubidium atoms. Quantum coherence and interference manifested by electromagnetically induced transparency suppress the linear susceptibilities and greatly enhance the nonlinear susceptibilities at low light intensities. The measured Kerr nonlinearity is comparable in magnitude to the linear dispersion in a simple two-level system and is several orders of magnitude greater than the Kerr nonlinearity of a conventional three-level scheme under similar conditions.  相似文献   

8.
Numerical solutions are obtained of the full self-consistent system of equations for the counter, rotating polarization components of the field of a short optical pulse propagating in a nonlinear birefringent fiber and in the ensemble of the energy-level degenerate doped resonance atoms implanted in the fiber material. In every cross section of the fiber, the ellipticity of the polarized wave experiences a complex evolution in time accompanied by rapid changes of the azimuthal angle due to the interplay of the dispersion and the Kerr nonlinear self-and cross-phase modulation. The reciprocal effect of the impurities on the traveling pulse causes oscillations of the pulse envelope that can completely distort the shape of the input signal, while the resonance absorption can drive the birefringence process from the nonlinear regime back to the linear one.  相似文献   

9.
Third-order nonlinear optical response of a semiconductor quantum dot, modulated by the metal nanoparticle (MNP), has been studied by using the effective mass and the rotating wave approximation. Considering multiple effects in the local and nonlocal optical response of the MNP, the dependence of the dispersion and the absorption on the size of the hybrid system are investigated in detail. By controlling the geometrical parameters of the hybrid structure and the direction of the electric field polarization, a significant enhancement of the nonlinear response is shown. The enhancement factor is nearly two orders of the magnitude, which is consistent with the experiment. Compared to the results obtained with the local effect, the center frequency shows blueshift obviously in the case of the nonlocal effect. In particular, the presence of the MNP leads to a strong absorption band appearance, which promises applications in the field of light transmission and the optical switching.  相似文献   

10.
S PANDA  B K PANDA 《Pramana》2012,78(5):827-833
The effect of conduction band nonparabolicity on the linear and nonlinear optical properties such as absorption coefficients, and changes in the refractive index are calculated in the Al0.3Ga0.7As/GaAs heterostructure-based symmetric rectangular quantum well under applied hydrostatic pressure and electric field. The electron envelope functions and energies are calculated in the effective mass equation including the conduction band nonparabolicity. The linear and nonlinear optical properties have been calculated in the density matrix formalism with two-level approximation. The conduction band nonparabolicity shifts the positions of the optical properties and decreases their strength compared to those without this correction. Both the optical properties are enhanced with the applied hydrostatic pressure. While the absorption coefficients are bleached under the combined effect of high pressure and electric field, the bleaching effect is reduced when nonparabolicity is included.  相似文献   

11.
Limin Fang  Jie Gao 《Optik》2013,124(24):6539-6544
The coherent superposition of two-atomic levels induced by coherent population trapping is employed in the two-level system, the standard three-level Λ type scheme and the four-level N-type systems and a weak probe pulse scans across the system. A theoretical analysis about the response of medium to the probe field is given. It is shown that under different initial conditions, the coherent superposition of the dark state exhibits abundant optical phenomena response to the probe field. It can change the absorption or gain and the dispersion relationship in the medium experienced by the probe. In the embedded three-level scheme, the probe experiences a crossover from absorption to transparent and then to amplification. Consequently the group velocity of the probe pulse can be controlled to propagate either as a subluminal, a standard, a superluminal or even a negative speed. In the embedded four-level N-type system, it can give an enhancement to the Giant Kerr effect and overcome the limitation of two-photon absorption, then make the nonlinear properties of the medium richer than the traditional N-type scheme.  相似文献   

12.
It has been shown that nonlinear near-field optical resonances occur in diatomic nanostructures consisting of identical or different two-level atoms in the presence of a radiation field when the dipole-dipole interaction is taken into account. The frequencies of these resonances depend strongly on the intensity of the external optical radiation, on the initial conditions, on the polarization of the external field with respect to the axis of the nanostructure, and on the interatomic distance. The interatomic interaction is taken into account beyond perturbation theory. For this reason, the effective polarizabilities of the atoms of the nanostructure are expressed in terms of the polynomials of both the interatomic distance and the electric field strength of the external optical wave. A “falling tower” effect that is caused by the nonlinear behavior of the local dipole moments of atoms in the nanostructure is predicted.  相似文献   

13.
The mode splitting in a system with Doppler-broadened high-density two-level atoms in the presence of magnetic field inside a relatively long optical cavity is studied in the superstrong coupling regime(atoms-cavity coupling strength g√N is near or larger than the cavity free-spectral range?FSR).The effect of a magnetic field applied along the quantization axis is used to break the polarization degeneracy of the cavity and thereby introduce birefringence(or Faraday rotation)into the medium.The cavity modes are further split in the presence of the magnetic field compared with the normal case of the multi-normal-mode splitting of the two-level system near the D2 line of87Rb.The dependence of the mode splitting on the magnetic field and the temperature is studied.The theoretical analysis according to the linear dispersion theory can provide a good explanation.  相似文献   

14.
15.
The properties of quantum entanglement in the two-photon Tavis–Cummings model with a Kerr nonlinearity are studied in terms of quantum information entropy theory. The reduced quantum entropy is employed to investigate the quantum entanglement between two two-level atoms and a single-mode coherent field. The relative quantum entropy is employed to investigate the quantum entanglement between the two two-level atoms. The influences of the nonlinear interaction of the Kerr medium with the field and the atomic dipole-dipole interaction on the properties of quantum entanglement of the system are also examined. Some important results are obtained.  相似文献   

16.
The existence of optical size resonances in atomic nanostructures is proved. The properties of optical size resonances strongly depend on the interatomic distances and on the polarization of an external radiation field. The properties of linear and nonlinear size resonances are considered in the case of two-dimensional nanostructures. The linear optical size resonances are described based on a closed system of equations for dipole oscillators and nonlocal field equations taking into account the dipole-dipole interactions of atoms in the radiation field. Using a stationary solution to these equations, it is demonstrated that two isotropic atoms with definite intrinsic frequencies form an anisotropic system in the radiation field, possessing two or four size resonances depending on whether the component atoms are identical or different. The nanostructure composed of two different atoms possesses two size resonances with positive dispersion and two other resonances with negative dispersion. The frequencies of the size resonances significantly differ from the intrinsic frequencies of isolated atoms entering into the nanostructure. By changing the angle of incidence of the external wave, it is possible to excite various size resonances. The properties of nonlinear optical size resonances excited by an intense radiation field were theoretically and numerically studied using the modified Bloch equations and nonlocal field equations. Dispersion relationships for the nonlinear resonances were derived and the inversion properties of atoms in the nanostructure were studied for various polarizations of the external optical wave.  相似文献   

17.
研究了初始处于GHZ态的三个两能级原子与双模腔场相互作用系统的纠缠动力学特性,得到了并发度和线性熵的解析表达式.讨论了腔场初始纠缠度对腔内两原子之间纠缠的影响,对其余子系统求迹后结果表明腔内两原子之间的纠缠出现突然产生现象,腔内两原子之间产生纠缠的阈值时间和最大值依赖于双模腔场初始纠缠度;并且发现腔内两原子子系统和腔外原子与场子系统之间在整个的时间演化过程中一直保持着纠缠状态.  相似文献   

18.
Based on a computer simulation, the self-focusing of an axially symmetric beam in a cubic nonlinear medium under the anomalous dispersion conditions is studied with the account for the time dispersion of nonlinear response, which manifests for femtosecond pulses. It is shown that, at a certain value of the parameter of linear modulation of the pulse (or of its chirp), the dispersion of nonlinear response can lead either to the suppression of formation of a nonlinear focus and to the possibility of formation of optical shock waves in time or even to a change in the regime of the beam self-action owing to the action of the local response, i.e., to the change from the self-focusing of the beam to the regime of its defocusing.  相似文献   

19.
We investigate the absorption and dispersion properties of a two-level atom driven by a polychromatic field. The driving field is composed of a strong resonant (carrier) frequency component and a large number of symmetrically detuned sideband fields (modulators). A rapid increase in the absorption at the central frequency and the collapse of the response of the system from multiple frequencies to a single frequency are predicted to occur when the Rabi frequency of the modulating fields is equal to the Rabi frequency of the carrier field. These are manifestations of the undressing or a disentanglement of the atomic and driving field states, that leads to a collapse of the atom to its ground state. Our calculation permits consideration of the question of the undressing of the driven atom by a multiple-modulated field and the predicted spectra offer a method of observing undressing. Moreover, we find that the absorption and dispersion spectra split into multiplets whose structures depend on the Rabi frequency of the modulating fields. The spectral features can jump between different resonance frequencies by changing the Rabi frequency of the modulating fields or their initial phases, which can have potential applications as a quantum frequency filter. Received 23 October 2001 and Received in final form 31 January 2002  相似文献   

20.
鄢嫣  魏巧  李高翔 《物理学报》2010,59(4):2505-2511
讨论了非线性光子晶体微腔中二能级原子在相干场驱动下腔场的频谱特性及光子的统计性质.研究结果表明,当光子晶体的态密度很大时,如果腔场模与原子共振荧光Mollow峰的中心峰共振,则腔场的涨落压缩到量子散弹噪声之下,且与线性光子晶体微腔的情况相比其谱线峰值变大.当驱动场频率较大时光子服从亚Poisson分布,且非常接近Poisson分布. 关键词: 光子晶体 参量振荡 非弹性谱 二阶相关函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号