首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnS:Cr (3 at.%) nanoparticles were synthesized by chemical co-precipitation method using EDTA as capping agent. The samples were annealed in air for 3 h in steps of 100 °C in the temperature range of 200–700 °C. The effect of annealing temperatures on the structural and photoluminescence properties of Cr doped ZnS nanoparticles was investigated using X-ray Diffraction (XRD), a Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDS), Diffuse Reflectance Spectra (DRS), Vibrating Sample Magnetometer (VSM) and Photoluminescence (PL) techniques. EDS spectra confirmed the presence of Cr in the samples with expected stoichiometry. XRD studies confirmed the formation of ZnO above 500 °C. Photoluminescence studies on ZnS:Cr nanoparticles indicated that the emission wavelength is tunable in the range of 440–675 nm as a function of annealing temperature. VSM results indicated a decrease in ferromagnetism with increase in annealing temperature, perhaps due to appreciable variation in structural defects that are sensitive to annealing temperature.  相似文献   

2.
The solidification kinetics of polyolefins (PO) under three cooling conditions were investigated using an in situ measurement of the temperature decay within the PO resins. The phase-change temperature range of high-density polyethylene (HDPE) was located between 110 and 120°C, and those of low-density polyethylene (LDPE) and polypropylene (PP) were 90–110°C and 100–120°C, respectively. The cooling rate of the liquid-state stage is larger than that of the crystallization stage, primarily owing to the release of the latent heat of crystallization as well as the reduced temperature difference between the sample and cooling medium; they jointly slow down the cooling rate to an extent. The time with respect to phase transformation and its lasting period have close relations to the materials' molecular characteristics (e.g., Mw, MWD, LCB, etc.). Three empirical equations were proposed, and found to be applicable for the cooling analysis of the PO molten materials at relatively low cooling rates prior to crystallization.  相似文献   

3.
A thin composite separator with polyethylene terephthalate nonwoven membrane as the structural support and polyvinylidene fluoride-hexafluoropropylene as the coating layer for lithium-ion batteries was prepared by a simple dip-coating process. The effect of different drying temperatures on the performance of the composite separator was investigated. The results indicate that 80 °C is the optimal drying temperature, preventing leakage current problems and providing a well-developed porous structure. The drying of the composite separator at 80 °C provides a superior thermal stability, better wettability with electrolyte, higher electrolyte uptake, and ionic conductivity compared to commercially available polypropylene (PP) separator. Furthermore, the electrochemical performance consisting of electrochemical stability, self-discharge, cycle performance, rate performance of the composite separator, and PP were determined. The drying of the composite separator at 80 °C shows almost the same oxidation stability and self-discharge performance, but a better cycling and rate performance than the PP separator.  相似文献   

4.
Ruthenium (Ru) Schottky contacts and thin films on n-type 6H–SiC were fabricated and characterised by physical and electrical methods. The characterisation was done after annealing the samples in air at various temperatures. Rutherford backscattering spectroscopy (RBS) analysis of the thin films indicated the oxidation of Ru after annealing at a temperature of 400 °C, and interdiffusion of Ru and Si at the Ru–6H–SiC interface at 500 °C. XRD analysis of the thin films indicated the formation of RuO2 and RuSi in Ru–6H–SiC after annealing at a temperature of 600 °C. The formation of the oxide was also corroborated by Raman spectroscopy. The ideality factor of the Schottky barrier diodes (SBD) was seen to generally decrease with annealing temperature. The series resistance increased astronomically after annealing at 700 °C, which was an indication that the SBD had broken down. The failure mechanism of the SBD is attributed to deep inter-diffusions of Ru and Si at the Ru–6H–SiC interface as evidenced by the RBS of the thin films.  相似文献   

5.
The recovery and recrystallisation behaviour of cold rolled Ni of different purity such as Ni doped with Sb, Ti and B between room temperature and 550°C was studied by measurement of the peak counting rate of 2γ-angular correlation during annealing with constant heating rate. The results indicate a strong dependence of the annealing behaviour on type and concentration of impurity atoms. For Ni of purity 99.8% and especially for NiSb the peak counting rate shows a large increment in the temperature region 200–400°C which is explained to be caused by the formation of vacancy clusters.  相似文献   

6.
《Composite Interfaces》2013,20(5):371-380
In this paper, the effect of thermal annealing on gallium nitride (GaN) pn-junction photodiode grown on Si(1?1?1) by RF-plasma assisted molecular beam epitaxy is described. Platinum (Pt) and silver (Ag) were used as ohmic contact for GaN pn-junction photodetector. The structural evolution and temperature dependence of the current of Pt/Ag contacts on GaN pn-junction at various annealing were investigated by scanning electron microscopy, atomic force microscopy, high resolution X-ray diffraction, and current–voltage (I–V) measurements, respectively. The temperature dependence of the current may be attributed to changes of the surface morphology and surface roughness of Pt/Ag contacts on the sample. The lower surface roughness was achieved at thermal annealing temperature of 700?°C.  相似文献   

7.
Nickel oxide thin films were prepared by thermal annealing of thin Ni films (thickness ca 47?nm) deposited by ion beam sputtering. The thermal annealing was performed at 350 °C and 400 °C with elected time (1–7 hours) in a quartz furnace opened to air. During annealing the samples underwent structural changes, as well as changes of their electrical properties. The structural properties (surface morphology and occurrence of crystalline phases) were analyzed by the AFM and XRD methods, O and Ni depth concentration profiles by the NRA method, and electrical properties (sheet resistance) by the van der Pauw 4-point technique. The sheet resistance (R S ) of the as-deposited sample was found to be 12.03 Ω/□; after open air thermal annealing at 350 °C for 1 h the value was found to be almost the same, 11.67 Ω/□. After 2 h of annealing, however, a sharp increase in the sheet resistance (R S = 1.46 MΩ/□) was observed. At this stage the deposit formed largely oxidized Ni layer with a distinct polycrystalline structure. The sharp increase of sheet resistance was ascribed to the oxidation of the Ni layer, leaving only a smaller amount of isolated Ni particles unoxidized. Almost complete oxidation was found after 7 h of annealing at 350 °C. At 400 °C was almost complete oxidation recorded already after 1 h of annealing.  相似文献   

8.
The results from experiments on measuring the rate of gasification for carbon and boron–carbon films and carbon fiber composite (CFC) exposed in oxygen–ozone mixtures are presented. The rate of gasification is 0.4–0.6 μm h–1 (at temperatures of 220–250°C, a pressure of 0.3 atm, and an ozone concentration of 0.6 at %) for carbon films; plane CFC samples; gaps 1 and 2 mm wide with walls of stainless steel; and gaps 1 mm wide with walls of CFC. It is 15 μm h–1 for plane CFC at a temperature of 250°C, a pressure of 1 atm, and an ozone concentration of 10 at %. The rate of gasification for boron–carbon films is from 3 to 30 nm h–1 for B/C ratios of 2.1 to 0.8 (at 250°C, 1 atm, and ozone concentration of 10 at %).  相似文献   

9.
Hydrothermal method was used to prepare TiO2 nanoparticles with annealing temperature at 500 °C–700 °C. The mixture of anatase-rutile phase was investigated by powerful tool of X-ray diffraction (XRD). The structural parameters of anatase and rutile mixture phaseTiO2 nanoparticles were calculated from the Rietveld refinement. The transformation rate of rutile was increased linearly with an annealing temperature of 500 °C–700 °C. The spherical morphology of the anatase and rutile mixed phase were obtained by scanning electron microscope and transmission electron microscope. The spherical particle of the anatase and rutile TiO2 shows with great aggregation with different size and within the range of few tens nm. The EDAX study revealed the presence of titanium and oxygen. The best photocatalytic activity was identified as the 87.04% of anatase and 12.96% of rutile mixer phase of TiO2. Various factors could be involved for a better photocatalytic activity.  相似文献   

10.
X-band EPR spectra on SiCN ceramics, doped with Fe(III) ions, annealed at 800 °C, 1000 °C, 1100 °C, 1285 °C, and 1400 °C have been simulated to understand better their magnetic properties, accompanied by new magnetization measurements in the temperature range of 5–400 K for zero-field cooling (ZFC) and field cooling (FC) at 100C. The EPR spectra reveal the presence of several kinds of Fe-containing nanoparticles with different magnetic properties. The maxima of the temperature variation of ZFC magnetization were exploited to estimate (i) the blocking temperature, which decreased with annealing temperature of the samples and (ii) the distribution of the size of Fe-containing nanoparticles in the various samples, which was found to become more uniform with increasing annealing temperature, implying that more homogenous magnetic SiCN/Fe composites can be fabricated by annealing at even higher temperatures than 1400 °C to be used as sensors. The hysteresis curves showed different behaviors above (superparamagnetic), below (ferromagnetic), and about (butterfly shape) the respective average blocking temperatures, 〈TB〉. An analysis of the coercive field dependence upon temperature reveals that it follows Stoner–Wohlfarth model for the SiCN/Fe samples annealed above 1100 °C, from which the blocking temperatures was also deduced.  相似文献   

11.
The spectral and structural characteristics of lithium borate glasses containing europium and aluminum have been investigated upon annealing at different temperatures. It has been found that the spectral characteristics of the studied system change nonmonotonically with an increase in the annealing temperature. After annealing at a temperature of 600°C, the luminescence spectra of the glasses exhibit broad structureless bands that are specific for the amorphous phase containing Eu3+ ions. Then, after annealing at T = 700°C, narrow lines appear in the wavelength ranges 585–595 and 610–620 nm, which correspond to the luminescence of the Eu(BO2)3 and EuAl3(BO3)4 borates. A further increase in the annealing temperature (T = 800–900°C) leads to the disappearance of europium aluminum borate. In the luminescence spectra of these samples, there are narrow bands in the wavelength range λ = 585–595 nm, which are typical of europium metaborate. Finally, at a temperature of 1050°C, these bands disappear and narrow lines appear again in the wavelength range 610–620 nm, which are characteristic of the EuAl3(BO3)4 borate. Thus, the temperature annealing makes it possible to purposely change the spectral characteristics of the studied system in the wavelength range 590–615 nm.  相似文献   

12.

The parameters of silicon light-emitting diodes (LEDs) prepared through boron implantation into n-Si, followed by annealing at 700–1200°C, were studied. The maximum room-temperature internal quantum efficiency of electroluminescence (EL) in the region of band-to-band transitions was estimated as 0.4% and reached at an annealing temperature of 1100°C. This value did not vary more than twofold within the operating temperature range 80–500 K. The EL growth and decay kinetics was studied at various currents. Following an initial current range of nonlinear dependence, the EL intensity scaled linearly with the current. It is shown that interpretation of this result will apparently require a revision of some present-day physical concepts concerning carrier recombination in silicon diodes.

  相似文献   

13.
The effect of ionizing gamma irradiation on the frequency and temperature dependences of the permittivity ε’(T) for lead scandoniobate relaxor (disordered) ferroelectric ceramics before and after thermal annealing was investigated by low-and infralow-frequency dielectric spectroscopy. It was demonstrated that the irradiation leads to a shift in the temperatures of the maxima in the dependence ε’(T) and the temperatures of the maxima in the dependence of the dispersion depth Δε’(T) toward the high-temperature range, as well as to the suppression of high-temperature (~ 300–400°C) polarization relaxation. After annealing at a temperature T ~ 600°C, the properties of the material were partially recovered.  相似文献   

14.
The annealing effect on structural and optical properties of the Diamond-like Nanocomposite (DLN) thin film deposited on glass substrate by Plasma Assisted Chemical Vapor Deposition (PACVD) method has been investigated. The films were annealed at temperature ranging from 300 to 600 °C, with 100 °C interval for 9 minutes by rapid thermal process (RTP) under vacuum. The structural changes of the annealed films have been studied using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning Electron Microscope (SEM), and optical parameters have been determined using transmittance and reflectance spectra in UV-UIS-NIR range. The result shows that the refractive index increases gradually from 1.79 to 2.84 with annealing temperature due to out-diffusion of H by breaking Si–H and C–H bond leads to Si–C bond, i.e. more cross linking structure. In higher temperature range, graphitization also enhanced the refractive index. However, the optical band gap at up to 400 °C initially increases from 3.05 to 3.20 eV and then decreases due to graphitization. The film has a great potential to be used as anti-reflection coating (ARC) on silicon-based solar cell.  相似文献   

15.
In this study, isothermal oxidation behavior of a Cu–Al–Ni–Fe shape-memory alloy between 500 and 900 °C was investigated. Alloy samples were exposed to oxygen by TG/DTA for 1 h at a constant temperature, allowing for calculation of the oxidation constant and activation energy values of the oxidation process. The oxidation constant value increased with temperature, reaching saturation at 800 °C. The effect of oxidation on crystal structure, surface morphology and chemical composition of the Cu–Al–Ni–Fe alloy was determined by X-ray diffractometer (XRD) and scanning electron microscope (SEM)–energy-dispersive X-ray (EDX) analyses. With increasing oxidation temperature, number and intensity of the characteristic 18R martensite phase peaks were reduced while Al2O3 phase peaks were increased. In parallel to the XRD results, the same variations were also detected by SEM–EDX measurements.  相似文献   

16.
The temperature dependence of the kinematic viscosity of liquid copper has been studied by the method of torsional vibrations during heating and cooling within the temperature range 1080–1500°C. A reversible structural transition was discovered in the vicinity of 1170°C. This transition manifests itself in a jumpwise change of viscosity and the activation energy of viscous flow at this temperature.  相似文献   

17.
《Current Applied Physics》2018,18(8):886-892
Effects of annealing temperature (600–750 °C) on crystalline structure, the morphology and piezoresponse hysteresis loops of BaTiO3 nanofibers prepared by electrospinning are characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscope and piezoresponse force microscope. When the annealing temperature is 700 °C, the nanofibers become smoother and have a diameter of 100–300 nm. Meanwhile the typical butterfly-shaped amplitude loop and 180°phase change represents the best ferroelectric and piezoelectric properties at 700 °C. So the 700 °C was found to be optimum for good piezoelectric characteristics at annealing temperature of 600 °C–750 °C. In order to give more clear evolution of domain states at different external fields, the three dimensional topographic and phase images of the nanofiber at different temperatures are observed by piezoresponse force microscope. The 90° domain switching is observed during heating from room temperature to 125 °C and the domain switching tends to be stable when the temperature exceeds a critical value. The thermal stress due to the high temperatures is responsible for switching mechanism from the perspective of equilibrium state free energy. This work suggests that the temperature variation should be considered while designing the ferroelectric devices based on one dimensional material.  相似文献   

18.
Zinc oxide thin films were deposited by radio frequency magnetron sputtering. The films were annealed in vacuum at temperatures of 400, 600, and 800 °C. The influence of annealing on the structural, chemical, and optical properties of the films was investigated. From a structural point of view, the films were highly oriented, with columnar microstructure. Chemical analysis indicated that the films were sub-stoichiometric, and that the concentration of oxygen vacancies was enhanced upon annealing. The films were highly transparent in the visible and near-infrared spectral regions. Transparency was reduced as the annealing temperature was increased. The refractive index and extinction coefficient, in the transparent regions of the films, were derived from transmittance measurements. The refractive index manifested variation that was affected by crystallite size, roughness and defect concentration. The extinction coefficient of the as-deposited films and those annealed at 400 °C was negligible. However, the films annealed at 600 or 800 °C had much larger values of the extinction coefficient due to increased absorption or scattering. The absorption coefficient and optical band gap of the films were derived from spectrophotometric measurements. The absorption coefficient showed progressive increase with the annealing temperature. However, the band gap did not show significant variation.  相似文献   

19.
The present paper investigates the tensile properties of post-irradiation annealed Cu–Ni alloy. The specimens were irradiated with a 15 MeV electron beam at room temperature and the post-irradiation annealing (PIA) of the specimens was carried out under vacuum at 450 °C for 15–120 min. The yield stress (YS), ultimate tensile stress (UTS), percentage elongation, stress relaxation rate and activation volume of both as-irradiated and post-irradiation annealed specimens were examined at room temperature using a universal testing machine. The results show that PIA of the specimen at 450 °C for 15 min decreases its YS and UTS, whereas the percentage elongation is increased. The changes in the tensile parameters become more pronounced with increases in annealing time. Effects of PIA on the stress relaxation rate and activation volume indicate that the relaxation rate of post-irradiation annealed specimens increases, and the activation volume decreases, with an increase in annealing time.  相似文献   

20.
According to stationary X-ray-excited luminescence spectra and thermally stimulated luminescence spectra of CaF2:Eu nanophosphors, it was found that Eu3+?→?Eu2+ conversion can occur during thermal annealing of fine-grained (d?=?25?nm) nanoparticles in the 200–800°C range, which is accompanied by an increase in their size within 40–189?nm. An important role of the exciton mechanism of Eu2+ luminescence excitation was revealed according to the temperature dependence of X-ray-excited luminescence spectra of CaF2:Eu nanoparticles of 114?nm size. The maximum of the X-ray-excited luminescence light output of CaF2:Eu nanophosphors in the Eu2+ ions’ emission band was traced out at 400–500°C annealing temperature and at the size of nanoparticles of 114–180?nm. The subsequent growth of the annealing temperatures, particularly in the 800–1000°C range, causes the reduction of X-ray-excited luminescence light output because of the increment of lattice defects’ concentration due to a sharp increase in the size of nanoparticles and their agglomeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号