首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In present paper, we analyze the dynamics of a single-block model on an inclined slope with Dieterich–Ruina friction law under the variation of two new introduced parameters: time delay Td and initial shear stress μ. It is assumed that this phenomenological model qualitatively simulates the motion along the infinite creeping slope. The introduction of time delay is proposed to mimic the memory effect of the sliding surface and it is generally considered as a function of history of sliding. On the other hand, periodic perturbation of initial shear stress emulates external triggering effect of long-distant earthquakes or some non-natural vibration source. The effects of variation of a single observed parameter, Td or μ, as well as their co-action, are estimated for three different sliding regimes: β < 1, β = 1 and β > 1, where β stands for the ratio of long-term to short-term stress changes. The results of standard local bifurcation analysis indicate the onset of complex dynamics for very low values of time delay. On the other side, numerical approach confirms an additional complexity that was not observed by local analysis, due to the possible effect of global bifurcations. The most complex dynamics is detected for β < 1, with a complete Ruelle–Takens–Newhouse route to chaos under the variation of Td, or the co-action of both parameters Td and μ. These results correspond well with the previous experimental observations on clay and siltstone with low clay fraction. In the same regime, the perturbation of only a single parameter, μ, renders the oscillatory motion of the block. Within the velocity-independent regime, β = 1, the inclusion and variation of Td generates a transition to equilibrium state, whereas the small oscillations of μ induce oscillatory motion with decreasing amplitude. The co-action of both parameters, in the same regime, causes the decrease of block’s velocity. As for β > 1, highly-frequent, limit-amplitude oscillations of initial stress give rise to oscillatory motion. Also for β > 1, in case of perturbing only the initial shear stress, with smaller amplitude, velocity of the block changes exponentially fast. If the time delay is introduced, besides the stress perturbation, within the same regime, the co-action of Td (Td < 0.1) and small oscillations of μ induce the onset of deterministic chaos.  相似文献   

2.
To interpolate function, f(x), a ? x ? b, when we have some information about the values of f(x) and their derivatives in separate points on {x0, x1,  , xn} ? [a, b], the Hermit interpolation method is usually used. Here, to solve this kind of problems, extended rational interpolation method is presented and it is shown that the suggested method is more efficient and suitable than the Hermit interpolation method, especially when the function f(x) has singular points in interval [a, b]. Also for implementing the extended rational interpolation method, the direct method and the inverse differences method are presented, and with some examples these arguments are examined numerically.  相似文献   

3.
A function which is homogeneous in x, y, z of degree n and satisfies Vxx + Vyy + Vzz = 0 is called a spherical harmonic. In polar coordinates, the spherical harmonics take the form rnfn, where fn is a spherical surface harmonic of degree n. On a sphere, fn satisfies ▵ fn + n(n + 1)fn = 0, where ▵ is the spherical Laplacian. Bounded spherical surface harmonics are well studied, but in certain instances, unbounded spherical surface harmonics may be of interest. For example, if X is a parameterization of a minimal surface and n is the corresponding unit normal, it is known that the support function, w = X · n, satisfies ▵w + 2w = 0 on a branched covering of a sphere with some points removed. While simple in form, the boundary value problem for the support function has a very rich solution set. We illustrate this by using spherical harmonics of degree one to construct a number of classical genus-zero minimal surfaces such as the catenoid, the helicoid, Enneper's surface, and Hennenberg's surface, and Riemann's family of singly periodic genus-one minimal surfaces.  相似文献   

4.
Let Xn denote the state of a device after n repairs. We assume that the time between two repairs is the time τ taken by a Wiener process {W(t), t ? 0}, starting from w0 and with drift μ < 0, to reach c  [0, w0). After the nth repair, the process takes on either the value Xn?1 + 1 or Xn?1 + 2. The probability that Xn = Xn?1 + j, for j = 1, 2, depends on whether τ ? t0 (a fixed constant) or τ > t0. The device is considered to be worn out when Xn ? k, where k  {1, 2, …}. This model is based on the ones proposed by Rishel (1991) [1] and Tseng and Peng (2007) [2]. We obtain an explicit expression for the mean lifetime of the device. Numerical methods are used to illustrate the analytical findings.  相似文献   

5.
We have studied the time reversal symmetry violation on the bases of the configuration mixing model and E-infinity theory. With the use of the Cabibbo angle approximation, we have presented the transformation matrix in terms of the golden ratio (?), and shown that the time reversal symmetry violation is described by the configuration mixing of the unstable and stable manifolds (Wu, Ws). The magnitude of the mixing for the weak interaction field is given by the expression sin2 θT(theor)  sin4 θC(theor)  (?)12 = 3.105 × 10?3, which is compared to the Kaon decay experiment ~2.3 × 10?3. We have also discussed the space–time symmetry violation by using the CPT theorem.  相似文献   

6.
We comment on traveling wave solutions and rational solutions to the 3+1 dimensional Kadomtsev–Petviashvili (KP) equations: (ut + 6uux + uxxx)x ± 3uyy ± 3uzz = 0. We also show that both of the 3+1 dimensional KP equations do not possess the three-soliton solution. This suggests that none of the 3+1 dimensional KP equations should be integrable, and partially explains why they do not pass the Painlevé test. As by-products, the one-soliton and two-soliton solutions and four classes of specific three-soliton solutions are explicitly presented.  相似文献   

7.
The article presents a mathematical model of nonlinear reaction diffusion equation with fractional time derivative α (0 < α ? 1) in the form of a rapidly convergent series with easily computable components. Fractional reaction diffusion equation is used for modeling of merging travel solutions in nonlinear system for popular dynamics. The fractional derivatives are described in the Caputo sense. The anomalous behaviors of the nonlinear problems in the form of sub- and super-diffusion due to the presence of reaction term are shown graphically for different particular cases.  相似文献   

8.
Let Ay = f, A is a linear operator in a Hilbert space H, y  N(A)  {u : Au = 0}, R(A)  {h : h = Au, u  D(A)} is not closed, ∥fδ  f  δ. Given fδ, one wants to construct uδ such that limδ→0uδ  y = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are formulated and mathematically justified.  相似文献   

9.
Let ut  uxx = h(t) in 0  x  π, t  0. Assume that u(0, t) = v(t), u(π, t) = 0, and u(x, 0) = g(t). The problem is: what extra data determine the three unknown functions {h, v, g} uniquely? This question is answered and an analytical method for recovery of the above three functions is proposed.  相似文献   

10.
The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate positions such that at least one codeword has a nonzero entry in each of these coordinate position. The rth generalized Hamming weight dr(C), 1  r  k, of C is defined as the minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence (d1(C), d2(C),  , dk(C)) is called the Hamming weight hierarchy (HWH) of C. The HWH, dr(C) = n  k + r;  r = 1, 2 , …, k, characterizes maximum distance separable (MDS) codes. Therefore the matrix characterization of MDS codes is also the characterization of codes with the HWH dr(C) = n  k + r; r = 1, 2,  , k. A linear code C with systematic check matrix [IP], where I is the (n  k) × (n  k) identity matrix and P is a (n  k) × k matrix, is MDS iff every square submatrix of P is nonsingular. In this paper we extend this characterization to linear codes with arbitrary HWH. Using this result, we characterize Near-MDS codes, Near-Near-MDS (N2-MDS) codes and Aμ-MDS codes. The MDS-rank of C is the smallest integer η such that dη+1 = n  k + η + 1 and the defect vector of C with MDS-rank η is defined as the ordered set {μ1(C), μ2(C), μ3(C),  , μη(C), μη+1(C)}, where μi(C) = n  k + i  di(C). We call C a dually defective code if the defect vector of the code and its dual are the same. We also discuss matrix characterization of dually defective codes. Further, the codes meeting the generalized Greismer bound are characterized in terms of their generator matrix. The HWH of dually defective codes meeting the generalized Greismer bound are also reported.  相似文献   

11.
《Journal of Algebra》2002,247(2):467-508
In this paper we shall generalize the notion of an integral on a Hopf algebra introduced by Sweedler, by defining the more general concept of an integral of a threetuple (H, A, C), where H is a Hopf algebra coacting on an algebra A and acting on a coalgebra C. We prove that there exists a total integral γ: C  Hom(C, A) of (H, A, C) if and only if any representation of (H, A, C) is injective in a functorial way, as a corepresentation of C. In particular, the quantum integrals associated to Yetter–Drinfel'd modules are defined. Let now A be an H-bicomodule algebra, HYDA the category of quantum Yetter–Drinfel'd modules, and B = {a  A|∑S 1(a〈1〉)a  1〉  a〈0〉 = 1H  a}, the subalgebra of coinvariants of the Verma structure A  HYDA. We shall prove the following affineness criterion: if there exists γ: H  Hom(H, A) a total quantum integral and the canonical map β: A  B A  H  A, β(a  B b) = S 1(b〈1〉)b  1〉  ab〈0〉 is surjective (i.e., A/B is a quantum homogeneous space), then the induction functor –  B A: MB  HYDA is an equivalence of categories. The affineness criteria proven by Cline, Parshall, and Scott, and independently by Oberst (for affine algebraic groups schemes) and Schneider (in the noncommutative case), are recovered as special cases.  相似文献   

12.
Let q be a pattern and let Sn, q(c) be the number of n-permutations having exactly c copies of q. We investigate when the sequence (Sn, q(c))c  0 has internal zeros. If q is a monotone pattern it turns out that, except for q = 12 or 21, the nontrivial sequences (those where n is at least the length of q) always have internal zeros. For the pattern q = 1(l + 1)l…2 there are infinitely many sequences which contain internal zeros and when l = 2 there are also infinitely many which do not. In the latter case, the only possible places for internal zeros are the next-to-last or the second-to-last positions. Note that by symmetry this completely determines the existence of internal zeros for all patterns of length at most 3.  相似文献   

13.
For fixed positive integer k, let En denote the set of lattice paths using the steps (1, 1), (1,  1), and (k, 0) and running from (0, 0) to (n, 0) while remaining strictly above the x-axis elsewhere. We first prove bijectively that the total area of the regions bounded by the paths of En and the x-axis satisfies a four-term recurrence depending only on k. We then give both a bijective and a generating function argument proving that the total area under the paths of En equals the total number of lattice points on the x-axis hit by the unrestricted paths running from (0, 0) to (n  2, 0) and using the same step set as above.  相似文献   

14.
In this paper, we used the concept of (L, M)-fuzzy remote neighborhood system to study and establish the convergence theory of molecular nets. Next, we introduce the Ti-axioms (i = ?1, 0, 1, 2) in (L, M)-fuzzy topological molecular lattices, and discuss some of their characterizations. Finally, we show that the Ti-axioms (i = ?1, 0, 1, 2) are preserved under homeomorphisms.  相似文献   

15.
Degasperis and Procesi applied the method of asymptotic integrability and obtain Degasperis–Procesi equation. They showed that it has peakon solutions, which has a discontinuous first derivative at the wave peak, but they did not explain the reason that the peakon solution arises. In this paper, we study these non-smooth solutions of the generalized Degasperis–Procesi equation ut  utxx + (b + 1)uux = buxuxx + uuxxx, show the reason that the non-smooth travelling wave arise and investigate global dynamical behavior and obtain the parameter condition under which peakon, compacton and another travelling wave solutions engender. Under some parameter condition, this equation has infinitely many compacton solutions. Finally, we give some explicit expression of peakon and compacton solutions.  相似文献   

16.
In this paper, we investigate the pest control model with population dispersal in two patches and impulsive effect. By exploiting the Floquet theory of impulsive differential equation and small amplitude perturbation skills, we can obtain that the susceptible pest eradication periodic solution is globally asymptotically stable if the impulsive periodic τ is less than the critical value τ0 . Further, we also prove that the system is permanent when the impulsive periodic τ is larger than the critical value τ0. Hence, in order to drive the susceptible pest to extinction, we can take impulsive control strategy such that τ < τ0 according to the effect of the viruses on the environment and the cost of the releasing pest infected in a laboratory. Finally, numerical simulations validate the obtained theoretical results for the pest control model with population dispersal in two patches and impulsive effect.  相似文献   

17.
In many real-life situations, we know the probability distribution of two random variables x1 and x2, but we have no information about the correlation between x1 and x2; what are the possible probability distributions for the sum x1 + x2? This question was originally raised by A.N. Kolmogorov. Algorithms exist that provide best-possible bounds for the distribution of x1 + x2; these algorithms have been implemented as a part of the efficient software for handling probabilistic uncertainty. A natural question is: what if we have several (n > 2) variables with known distribution, we have no information about their correlation, and we are interested in possible probability distribution for the sum y = x1 +  + xn? Known formulas for the case n = 2 can be (and have been) extended to this case. However, as we prove in this paper, not only are these formulas not best-possible anymore, but in general, computing the best-possible bounds for arbitrary n is an NP-hard (computationally intractable) problem.  相似文献   

18.
The mathematical expressions for the commutativity or self-duality of an increasing [0, 1]2  [0, 1] function F involve the transposition of its arguments. We unite both properties in a single functional equation. The solutions of this functional equation are discussed. Special attention goes to the geometrical construction of these solutions and their characterization in terms of contour lines. Furthermore, it is shown how ‘rotating’ the arguments of F allows to convert the results into properties for [0, 1]2  [0, 1] functions having monotone partial functions.  相似文献   

19.
P-matrices play an important role in the well-posedness of a linear complementarity problem (LCP). Similarly, the well-posedness of a horizontal linear complementarity problem (HLCP) is closely related to the column-W property of a matrix k-tuple.In this paper we first consider the problem of generating P-matrices from a given pair of matrices. Given a matrix pair (D, F) where D is a square matrix of order m and matrix F has m rows, “what are the conditions under which there exists a matrix G such that (D + FG) is a P-matrix?”. We obtain necessary and sufficient conditions for the special case when the column rank of F is m ? 1. A decision algorithm of complexity O(m2) to check whether the given pair of matrices (D, F) is P-matrisable is obtained. We also obtain a necessary and an independent sufficient condition for the general case when rank(F) is less than m ? 1.We then generalise the P-matrix generating problem to the generation of matrix k-tuples satisfying the column-W property from a given matrix (k + 1)-tuple. That is, given a matrix (k + 1)-tuple (D1,  ,Dk, F), where Djs are square matrices of order m and F is a matrix having m rows, we determine the conditions under which the matrix k-tuple (D1 + FG1,  ,Dk + FGk) satisfies the column-W property. As in the case of P-matrices we obtain necessary and sufficient conditions for the case when rank(F) = m ? 1. Using these conditions a decision algorithm of complexity O(km2) to check whether the given matrix (k + 1)-tuple is column-W matrisable is obtained. Then for the case when rank(F) is less than m ? 1, we obtain a necessary and an independent sufficient condition.For a special sub-class of P-matrices we give a polynomial time decision algorithm for P-matrisability. Finally, we obtain a geometric characterisation of column-W property by generalising the well known separation theorem for P-matrices.  相似文献   

20.
This work presents a numerical study on the turbulent flow of air with dispersed water droplets in separators of mechanical cooling towers. The averaged Navier-Stokes equations are discretised through a finite volume method, using the Fluent and Phoenics codes, and alternatively employing the turbulence models k ? ?, k ? ω and the Reynolds stress model, with low-Re version and wall enhanced treatment refinements. The results obtained are compared with numerical and experimental results taken from the literature. The degree of accuracy obtained with each of the considered models of turbulence is stated. The influence of considering whether or not the simulation of the turbulent dispersion of droplets is analyzed, as well as the effects of other relevant parameters on the collection efficiency and the coefficient of pressure drop. Focusing on four specific eliminators (‘Belgian wave’, ‘H1-V’, ‘L-shaped’ and ‘Zig-zag’), the following ranges of parameters are outlined: 1  Ue  5 m/s for the entrance velocity, 2  Dp  50 μm for the droplet diameter, 650  Re  8.500 for Reynolds number, and 0.05  Pi  5 for the inertial parameter. Results reached alternately with Fluent and Phoenics codes are compared. The best results correspond to the simulations performed with Fluent, using the SST k ? ω turbulence model, with values of the dimensionless scaled distance to wall y+ in the range 0.2 to 0.5. Finally, correlations are presented to predict the conditions for maximum collection efficiency (100 %), depending on the geometric parameter of removal efficiency of each of the separators, which is introduced in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号