首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionic liquid SLB-IL111 column, available from Supelco Inc., is a novel fused capillary gas chromatography (GC) column capable of providing enhanced separations of fatty acid methyl esters (FAMEs) compared to the highly polar cyanopropyl siloxane columns currently recommended for the separation of cis- and trans isomers of fatty acids (FAs), and marketed as SP-2560 and CP-Sil 88. The SLB-IL111 column was operated isothermal at 168°C, with hydrogen as carrier gas at 1.0 mL/min, and the elution profile was characterized using authentic GC standards and synthetic mono-unsaturated fatty acids (MUFAs) and conjugated linoleic acid (CLA) isomers as test mixtures. The SLB-IL111 column provided an improved separation of cis- and trans-18:1 and cis/trans CLA isomers. This is the first direct GC separation of c9,t11- from t7,c9-CLA, and t15-18:1 from c9-18:1, both of which previously required complimentary techniques for their analysis using cyanopropyl siloxane columns. The SLB-IL111 column also provided partial resolution of t13/t14-18:1, c8- from c6/c7-18:1, and for several t,t-CLA isomer pairs. This column also provided elution profiles of the geometric and positional isomers of the 16:1, 20:1 and 18:3 FAMEs that were complementary to those obtained using the cyanopropyl siloxane columns. However, on the SLB-IL111 column the saturated FAs eluted between the cis- and trans MUFAs unlike cyanopropyl siloxane columns that gave a clear separation of most saturated FAs. These differences in elution pattern can be exploited to obtain a more complete analysis of complex lipid mixtures present in ruminant fats.  相似文献   

2.
A GC/MS procedure has been developed, optimized, and applied to characterization of oil binders in paintings. The procedure involves hydrolysis of lipids to fatty acids (FAs) and derivatization of FAs to fatty acid methyl esters (FAMEs) by a solution of sodium methanolate in methanol at an elevated temperature. FAMEs are analyzed by temperature-programed GC followed by full-scan MS. Old and dried samples are subjected to extraction of nonpolymerized FAMEs into dichloromethane prior to hydrolysis. The method provides a good repeatability of results and has been applied to the characterization of common plant oils used in paintings, to commercial oil and tempera paints, to model painting samples, and to samples taken from real paintings. The fresh oils and binders can readily be identified and characterized. The ratio of the methyl esters of palmitic and stearic acids can be used to characterize oil binders in old works of art.  相似文献   

3.
4.
In this work the development of a comprehensive 2-D GC flame ionization detection (GC x GC FID) method for biodiesel fuels is reported. This method is used for the analysis of fatty acid methyl esters (FAMEs) in both biodiesel (B100) and biodiesel blend (B5) samples. The separation of FAME was based on component boiling point in the first dimension and polarity in the second dimension by using a BPX5/BP20 column set to provide a measure of 'orthogonality' in the 2-D space. Here the columns are coupled with a cryogenic modulator operating in a novel temperature programmed mode (T(M)) whereby the cryotrap is progressively incremented in temperature as the oven temperature is increased. The final method employs eight cryotrap temperature settings. The developed GC x GC method is able to successfully characterize and identify both B100 and B5 FAME components, which are produced from a variety of vegetable oils, animal fats and waste cooking oils, with high precision. The method is capable of analysing FAME with carbon numbers C4-C24, and is particularly suitable to characterize various types of biodiesel, making it possible to differentiate the origin and type of FAME used in the biodiesel samples.  相似文献   

5.
The influence of temperature and capillary column stationary phase polarity on the equivalent chain length (ECL) values of unsaturated fatty acid methyl esters (FAMEs) is discussed. Comparisons are made of a bonded, nonpolar methyl silicone, bonded and nonbonded polyethylene glycols, and a highly polar, stabilized cyanosilicone stationary phase. The change in the ECL values over a 20° temperature range is used to demonstrate selectivity shifts and the influence of temperature on the separation of FAMEs on these phases. The effect of the degree of unsaturation of the FAME components, on the various stationary phases is also investigated.  相似文献   

6.
The fatty acid methyl ester (FAME) content of biodiesel fuels has traditionally been determined using gas chromatography with a polar stationary phase. In this study, a direct comparison of the separation of FAMEs present in various biodiesel samples on three polar stationary phases and one moderately polar stationary phase (with comparable column dimensions) was performed. Retention on each column was based on solubility in and polarity of the phase. Quantitative metrics describing the resolution of important FAME pairs indicate high resolution on all polar columns, yet the best resolution, particularly of geometric isomers, is achieved on the cyanopropyl column. In addition, the separation of four C18 monounsaturated isomers was optimized and the elution order determined on each column. FAME composition of various biodiesel fuel types was determined on each column to illustrate (1) chemical differences in biodiesels produced from different feedstocks and (2) chemical similarities in biodiesels of the same feedstock type produced in different locations and harvest seasons.  相似文献   

7.
Retention with porous graphitic carbon was investigated with 25 structures of fatty acid methyl esters (FAMEs) with two different mobile phases: CH(3)CN:CHCl(3) 60:40 (v/v) and CH(3)OH:CHCl(3) 60:40 (v/v) with both 0.1% triethylamine (TEA) and an equimolar amount of HCOOH. Preliminary results showed that the use of TEA/HCOOH led to the response increase of saturated FAMEs with evaporative light scattering detection. No increase was observed for unsaturated one. These modifiers may slightly reduce the retention of FAMEs but did not significantly modify the separation factor with porous graphitic carbon. Thermodynamic parameters were calculated for each structure using Van't Hoff plot measured over the temperature range from 10 to 50 degrees C, with the both mobile phase conditions. All the studied compounds were found linked by the same retention mechanism on porous graphitic carbon. Quantitative in silico analysis of the retention using a molecular mechanics calculation demonstrated a good correlation between the retention factors and the molecular interaction energy values (r>0.93). Especially the Van der Waals energy was predominant, and the contribution of electrostatic energy was negligible for the quantitative analysis of the retention. The results indicate that Van der Waals force, hydrophobic interaction, is predominant for the retention of FAMEs on this packing material. The relative retention for highly unsaturated homologues can be changed by the selection of the weak solvent CH(3)CN or CH(3)OH. Then isomers differing only in the position of the carbon double bond on the alkyl chain can be separated and their behaviour is summarised as the closer the carbon double bonds to the FAME polar head, the more the retention decreases. Finally, the more important the number of carbon double bonds in the alkyl chain is, the smaller the retention is.  相似文献   

8.
Harynuk  J.  Wynne  P. M.  Marriott  P. J. 《Chromatographia》2006,63(13):S61-S66
In the analysis of fatty acids, one of the most commonly used tools is a GC separation of the fatty acid methyl esters (FAME). Many researchers perform this separation using a non-polar phase such the ubiquitous 5% phenyl / 95% methyl capillary columns found in most every chromatography laboratory. Numerous laboratories have also turned recently to polar phases such as 70% cyanopropyl columns, as this type of chemistry provides increased selectivity for unsaturated compounds, and thus improved separation of cis/trans and ω3/ω6 FAME isomers. Here, a series of columns nominally having 60, 70, 80, and 90% bis-cyanopropyl content have been tested for the separation of FAME isomers. Trends in retention and the influence of increasing phase polarity on effective and fractional chain lengths are highlighted to provide the FAME chromatographer with insight into which of these novel stationary phases might be best suited to their particular application. In addition, the elution temperatures (Te) of the FAME and linear alkane standards are presented, as this information will be of value to comprehensive two-dimensional multidimensional GC (GC × GC) users who wish to use these columns in the primary dimension separation.  相似文献   

9.
Summary The aim of this work was to use SFC to separate simple, slightly basic, imidazole derivatives which are used for the synthesis of more complex molecules with therapeutic properties. Control of their purity utilizes separation techniques and this paper shows what SFC can do in comparison with LC which requires derivatization before detection and with GC where peak tailing can be a problem. Our results concern the use of sub-critical mixtures of CO2 and polar modifiers because imidazole derivatives react with neat CO2, thus failing to elute from packed columns, and are only partially resolved on capillary columns with neat N2O. Therefore, separations with CO2-alcohol-amine-water mixtures on aminopropyl-bonded silica with UV detection are discussed. The resolution and sensitivity limits allow real sample analysis within a very short time.  相似文献   

10.
The analysis of the cellular lipidic fraction of bacteria is described. After hydrolysis and methylation, the fatty acid methyl esters (FAMEs) are determined by 1-D GC using the Sherlock MIDI bacteria identification system, by comprehensive GC (GC x GC) and by GC-MS in electron impact (EI) and positive chemical ionisation (PCI) mode. With GC x GC, the enhanced selectivity and group type separation provides a more complete elucidation of the fatty acids in microorganisms. GC-EI-MS and GC-PCI-MS were helpful for confirmation. The bacteria selected in this study are Brevundimonas diminuta, Chryseobacterium gleum and Stenotrophomonas maltophilia.  相似文献   

11.
Fast and conventional GC techniques were both applied to ten different lipidic matrices and the results then compared. The fats and oils were of fish, animal, and vegetable origin and were all simultaneously transesterified with acidic methanol before performing batch analysis of the fatty acid methyl esters (FAMEs) obtained. All FAMEs samples were consecutively analyzed three times by each method. The fast method significantly reduced the time required for analysis by a factor of 5 while maintaining a similar resolution. Furthermore, the reproducibility of relative quantitative data was measured on going from one method to the other. Peak identification was achieved through conventional GC‐MS in combination with linear retention index values contained in a home library and information derived from comprehensive 2D GC group patterns.  相似文献   

12.
Fatty acid methyl esters (FAMEs) of pure triglyceride standards, oils, and fat from dry matrixes were formed by transesterification using sodium methoxide in methanol-hexane. FAMEs were produced by direct addition of sodium methoxide-hexane to samples and heating to simultaneously extract and transesterify acyl lipids. FAMEs were quantitated by capillary gas chromatography (GC) over a fatty acid concentration range of 0 to 1.7 mg/mL (r > or = 0.9997). Total fat was calculated as the sum of individual fatty acids expressed as triglyceride equivalents, in accordance with nutrition labeling guidelines. Saturated, polyunsaturated, and monounsaturated fats were calculated as sums of individual free fatty acids. Absolute recoveries determined from individual fatty acids in test samples ranged from 69.7 to 106%. Recoveries (relative to the C13:0 internal standard) for individual fatty acids in test samples ranged from 95 to 106%. Reproducibility was constant at each fatty acid level in the reaction mixture (n = 5, coefficient of variation [CV] < 2%). Absolute recovery determined from the sum of total fatty acids in standard reference material (SRM) 1846 (powdered infant formula) was 96.4%. Analysis of SRM 1846 gave results that agreed closely with the certified fat and fatty acid values. Analysis of commercial infant formula gave results that were comparable to those obtained with AOAC Method 996.01. The direct extraction methylation procedure is rapid, and the transesterification of acyl lipids to form FAMEs is complete within 15 min. Classical saponification and refluxing are not required. This method provides FAMEs free of interferences and easily quantitated by GC or confirmed by GC/mass spectrometry (MS). Unambiguous MS identification of individual FAMEs derived from pure standards, SRM 1846, and powdered infant formula product was obtained.  相似文献   

13.
Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid–liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 ± 3% correct classification efficiency.   相似文献   

14.
Ionic liquid stationary phases were tested for one dimensional gas chromatography-mass spectrometry (GC-MS) and comprehensive two dimensional gas chromatography (GC×GC) of fatty acid methyl esters from algae. In comparison with polyethylene glycol and cyanopropyl substituted polar stationary phases, ionic liquid stationary phases SLB-IL 82 and SLB-IL 100 showed comparable resolution, but lower column bleeding with MS detection, resulting in better sensitivity. The selectivity and polarity of the ionic liquid phases are similar to a highly polar biscyanopropyl-silicone phase (e.g. HP-88). In GC×GC, using an apolar polydimethyl siloxane×polar ionic liquid column combination, an excellent group-type separation of fatty acids with different carbon numbers and number of unsaturations was obtained, providing information that is complementary to GC-MS identification.  相似文献   

15.
A twin GC x GC system has been designed which enables the analysis of a sample by means of two different and independent column combinations simultaneously. Both combinations are incorporated in the same oven, using the same temperature programme, and are fed using a 50:50 column-entrance-split. It is demonstrated that, employing combinations of a conventional non-polar x polar and a reversed-type polar x non-polar column set, the information content is as high, and the analytical performance is as good as when using two separate GC x GC systems. That is, there is an appreciable gain of time and a reduction of costs without any loss of quality. The general usefulness of performing, and comparing two mutually different GC x GC runs is further illustrated with FAMEs in olive oil, and pollutants in a sediment sample.  相似文献   

16.
A series‐coupled ensemble of two capillary GC columns of different selectivity with an adjustable pressure at the column junction point is used to obtain tunable selectivity for high‐speed GC and GC/TOFMS. An electronic pressure controller with a 0.1‐psi step size is used to obtain numerous computer‐selected unique selectivities. System configurations for conventional, atmospheric‐pressure outlet operation with flame ionization detection and for vacuum‐outlet operation with photoionization detection are described for GC‐only experiments. Polydimethylsiloxane is used as the non‐polar column and polyethylene glycol (atmospheric outlet) or triflouropropylpolysiloxane (vacuum outlet) is used as the polar column. For GC/TOFMS experiments, 5% phenyl polydimethylsiloxane was used as the non‐polar column, and polyethylene glycol was used as the polar column. The time‐of‐flight mass spectrometer can acquire up to 500 complete mass spectra per second. Since spectral continuity is achieved across the entire chromatographic peak profile, severely overlapping peaks can be spectrally deconvoluted for high‐speed characterization of completely unknown mixtures. For mixture components with significantly different fragmentation patterns, spectral deconvolution can be achieved for chromatographic peak separations of as little as 6.0 ms. This can result is very large peak capacity for time compressed (not completely resolved) chromatograms. The use of columns with tunable selectivity allows for precise peak‐position control, which can result in more efficient utilization of available peak capacity and thus further time compression of chromatograms. The limits of tunability and deconvolution are tested for near co‐elutions of different classes of hydrocarbon compounds as well as for more multi‐functional mixtures.  相似文献   

17.
Quantifying the concentrations of organics such as phospholipid fatty acids (PLFAs) and n‐alkanes and measuring their corresponding 13 C/12 C isotope ratios often involves two separate analyses; (1) quantification by gas chromatography flame ionisation detection (GC‐FID) or gas chromatography/mass spectrometry (GC/MS), and (2) 13 C‐isotope abundance analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC‐C‐IRMS). This requirement for two separate analyses has obvious disadvantages in terms of cost and time. However, there is a history of using the data output of isotope ratio mass spectrometers to quantify various components; including the N and C concentrations of solid materials and CO2 concentrations in gaseous samples. Here we explore the possibility of quantifying n‐alkanes extracted from sheeps' faeces and fatty acid methyl esters (FAMEs) derivatised from PLFAs extracted from grassland soil, using GC‐C‐IRMS. The results were compared with those from GC‐FID analysis of the same extracts. For GC‐C‐IRMS the combined area of the masses for all the ions (m/z 44, 45 and 46) was collected, referred to as 'area all', while for the GC‐FID analysis the peak area data were collected. Following normalisation to a common value for added internal standards, the GC‐C‐IRMS 'area all' values and the GC‐FID peak area data were directly compared. Strong linear relationships were found for both n‐alkanes and FAMEs. For the n‐alkanes the relationships were 1:1 while, for the FAMEs, GC‐C‐IRMS overestimated the areas relative to the GC‐FID results. However, with suitable reference material 1:1 relationships were established. The output of a GC‐C‐IRMS system can form the basis for the quantification of certain organics including FAMEs and n‐alkanes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
5种贝类脂肪含量及脂肪酸组成研究   总被引:8,自引:0,他引:8  
Lao BS  Sheng GY  Fu JM  Wen KW  Zhang G  Min YS 《色谱》2001,19(2):137-140
 用氯仿 甲醇法测定了广州海鲜市场上棕带仙女蛤、波纹巴非蛤、文蛤、栉孔扇贝和园华扇贝等 5种贝类的脂肪含量 ,并用GC MS法测定了它们的脂肪酸组成。 5种贝类鉴定出的脂肪酸都在 99% (质量分数 )以上。它们的脂肪含量都大于 1% (质量分数 ) ,园华扇贝的脂肪含量最高。它们的ω 3多不饱和脂肪酸与ω 6多不饱和脂肪酸含量的比值基本上都大于 2。两种扇贝的廿碳五烯酸 (EPA)和廿二碳六烯酸 (DHA)含量都比较高。分析结果表明 ,园华扇贝不仅脂肪含量高 ,而且EPA与DHA的含量也比较高 ,是EPA和DHA理想的提取原料  相似文献   

19.
Capillary gas chromatographic and gas chromatographic--mass spectrometric methods were employed for profiling total fatty acid content of human erythrocyte membranes. The protocol was designed to efficiently separate, identify, and accurately quantify the fatty acid composition in human erythrocyte membranes. Washed erythrocyte "ghosts" were saponified in aqueous methanolic sodium hydroxide solution and methylated with boron trichloride and acid catalysis. Extracted total fatty acid methyl esters (FAMEs) were analyzed using a highly polar cyanopropylsiloxane SP 2560 fused-silica capillary column. Total run time was 55 min, and 45 FAMEs were tentatively identified by relative retention times compared to those of known FAMEs. Confirmation of identities by mass spectral structure elucidation revealed saturated, mono- and polyunsaturated, and branched-chain FAMEs. The presence of four fatty aldehydes was also confirmed as dimethyl acetal derivatives. Identification of cis/trans isomers was based on relative retention times and characteristic profile of the cis/trans FAME standard. Quantification of FAMEs for normal subjects showed some variation in relative amounts, consistent with expectations based on literature reports on total or phospholipid FAMEs from human erythrocytes. Separation of individual components of fatty acid families (n-3), (n-6), and (n-9) is demonstrated. Losses in relative amounts of polyunsaturated fatty acids upon storing samples were also detectable by this rapid method.  相似文献   

20.
Summary Trimethylsulfonium hydroxide (TMSH) can convert fatty acids into the corresponding fatty acid methyl esters (FAMEs) in a single step. These fatty acids may also be bound in biomolecules such as phospholipids and/or glycerides. Complex mixtures of saturated and unsaturated FAMEs which may contain hydroxy and cylopropyl groups are obtained by trans-esterification; they can easily be separated in most cases by capillary GC. When FAMEs are generated from different microorganisms e.g. bacteria the patterns of the chromatograms are characteristic. Examples of characteristic patterns of bacteria with different cell wall structures are shown. The described method of transesterification can also be applied directly to blood serum without sophisticated sample pretreatment. The profiles of the chromatograms match well those described in the literature obtained by other methods of trans-esterification or sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号