首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple laboratory-made sheathless electrospray interface for coupling of capillary electrophoresis to ion-trap mass spectrometry (CE/MS) was developed. The interface was machined in-house and it was designed to be freely interchangeable with the commercially available ionization sources for the mass spectrometer. Sharpened fused-silica capillaries were coated with nickel by a simple electrodeless plating procedure and were used as all-in-one columns/emitters. The electrodeless plating produced a 2-5- micro m thick smooth nickel layer that lasted for more than 8 h of continuous electrospraying. The performance of the CE/MS interface was examined by using four cationic imipramine derivatives as test substances. Relative detection limits were calculated on the basis of the extracted ion electrophorograms and were in the range 6-130 nmol/L, corresponding to absolute detection limits in the range of 20-400 amol. The system was applied for analysis of impurities in an impure imipramine N-oxide preparation, and two of the impurities could be identified on the basis of online-MS(MS) spectra recorded in scan-dependent mode.  相似文献   

2.
Summary Intensive work has been invested in recent years to evaluate the performance of capillary electrophoresis (CE) in forensic analysis. Tremendous progress has also been achieved in interfacing CE to sensitive and specific detection systems such as the mass spectrometer (MS). We have recently developed an electrospray time-of-flight mass spectrometer (ESI-TOFMS) for use as a detector for fast and efficient liquid phase separations. In the present paper we investigated ESI-TOFMS for the analysis of an opium powder. Both continuous infusion and CE were studied for direct sample introduction into the TOFMS and mixture separation, respectively. CEMS analysis of the opium was performed in a citrate buffer, using aqueous or mixed aqueous/organic eluents. Low fmol detection was achieved.  相似文献   

3.
In order to develop a robust and easy-to-use technique for characterization of bacterial polysaccharides, a pseudo-hydrolysis strategy was investigated. Based on in-source collision-induced dissociation, polysaccharide molecular ions were fragmented within the orifice-skimmer region of an electrospray ionization (ESI) mass spectrometer. The fragment ions thus generated were then analyzed similarly to the conventional ESI mass spectrometry approach. MS/MS scanning was applied to obtain product-ion spectra of the primary fragments for sequencing. To further improve the sensitivity and separation of polysaccharides from other components in the samples, a pressure-assisted capillary electrophoresis/mass spectrometry (CE/MS) system was employed. Using bacterial polysaccharides as model compounds, the mass spectra obtained for polysaccharide repeating units generated through chemical hydrolysis and in-source fragmentation were directly compared, both in positive and negative ion modes. With the additional separation of impurities provided by CE, the success of this technique has been demonstrated for structural analysis of O-chain polysaccharides (O-PS) and capsular polysaccharides (CPS). In-source fragmentation was applied to promote the formation of structurally relevant repeating units of heterogeneous CPS that would remain undetected using conventional ESI conditions. This approach was proven to be particularly useful for probing the subtle structural differences in monosaccharide composition and functionalities arising across bacterial serotypes.  相似文献   

4.
Systems for efficient separation of selected alkaloid groups by high performance liquid chromatography (HPLC), capillary electrophoresis (CE) and capillary electrophoresis coupled with electrospray ionisation mass spectrometry (CE-ESI-MS) are described. The optimized HPLC system was applied for the separation of 23 standard indole alkaloids as well as for qualitative and quantitative analyses of crude alkaloid extracts of Rauvolfia serpentina X Rhazya stricta hybrid cell cultures. The developed conditions for CE analysis proved to be efficient for separation of mixtures of standard indole and beta-carboline alkaloids. The described buffer system is also applicable in the combination of CE with electrospray ionisation mass spectrometry. This analytical technique allowed the separation and identification of components of standard indole alkaloid mixture as well as crude extracts of R. serpentina roots, R. serpentina cell suspension cultures and cortex of Aspidosperma quebracho-blanco. The influence of buffer composition and analyte structures on separation is discussed.  相似文献   

5.
A capillary electrophoresis apparatus was used as sampler for flow injection analysis (FIA) in tandem mass spectrometry of L-carnitine and its acetyl- and propionyl-metabolites in human plasma. The capillary electrophoresis instrument was coupled to the ion trap mass spectrometer by an electrospray ionization coaxial sheath liquid interface. The electrophoresis capillary introduced the sample directly into the source by applying a prolonged sample injection. The use of the capillary electrophoresis apparatus miniaturised the FIA procedure, substantially reducing the quantities of solvents and samples used, and allowed rapid automated sequential analyses. The method was optimised and validated using a dialyzed human plasma matrix. The plasma samples were analysed after a simple, rapid deproteinisation procedure with acetonitrile and diluted 70 times before direct injection into the mass spectrometer for product ion scan MS/MS analysis in positive ionisation. The total analysis time was 5 min, including capillary preconditioning and acquisition time (3 min). The method was sensitive, allowing the determination of L-, L-acetyl- and L-propionyl-carnitines at 140, 14 and 3.6 nM concentrations (injected values) corresponding to lower limit of quantitation values in plasma of 10, 1 and 0.25 microM, respectively. The method was processed for full validation and applied to the analysis of L-carnitine and its short chain derivatives in human plasma samples.  相似文献   

6.
Application of capillary electrophoresis (CE) as a high-resolution separation technique in metalloproteomics research is critically reviewed. The focus is on the requirements and challenges involved in coupling CE to sensitive element and molecule-specific detection techniques such as inductively coupled plasma mass spectrometry (ICP–MS) or electrospray ionisation mass spectrometry (ESI–MS). The complementary application of both detection techniques to the structural and functional characterisation of metal-binding proteins and their structural metal-binding moieties is emphasised. Beneficial aspects and limitations of mass spectrometry hyphenated to CE are discussed, on the basis of the literature published in this field over the last decade. Recent metalloproteomics applications of CE are reviewed to demonstrate its potential and limitations in modern biochemical speciation analysis and to indicate future directions of this technique.  相似文献   

7.
Sample injection is a critical step in a capillary electrophoresis (CE) analysis. Electrokinetic injection is the simplest approach and is often selected for implementation in portable CE instruments. However, in order to minimize the effect of sample matrix upon the results of a CE analysis, hydrodynamic injection is preferred. Although portable CE instruments with hydrodynamic injection have been reported, injection has always been performed at the grounded end of the capillary. This simplifies fluidic handling but limits coupling with electrochemical detectors and electrospray ionization–mass spectrometry (ESI–MS). We demonstrated previously that injection at the high-voltage (HV) end of the capillary could be performed using an HV-compatible rotary injection valve (fixed-volume injection). However, the mismatch between the bore sizes of the channels on the rotor–stator valve and the separation capillary caused peak tailing and undesired mixing, impairing analytical performance. In this work, we present an HV-compatible hydrodynamic injection approach that overcomes the issues associated with the fixed-volume injection approach reported previously. The performance of the CE instrument was demonstrated by analyzing a mixture of 13 amino acids by CE coupled to laser-induced fluorescence, which showed relative standard deviations for peak area and migration time below 5% and 1%, respectively, for triplicate analysis. Additionally, replicate measurements of a mixture of amino acids, peptides, nucleobases, and nucleosides by CE coupled to electrospray ionization–mass spectrometry (CE–ESI–MS) were performed to evaluate peak tailing, and results were similar to those obtained with a commercial CE–ESI–MS setup.  相似文献   

8.
Sixteen synthetic chemical drugs, often found in adulterated Chinese medicines, were studied by capillary electrophoresis/UV absorbance (CE/UV) and capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS). Only nine peaks were detected with CZE/UV, but on-line CZE/MS provided clear identification for most compounds. For a real sample of a Chinese medicinal preparation, a few adulterants were identified by their migration times and protonated molecular ions. For coeluting compounds, more reliable identification was achieved by MS/MS in selected reaction monitoring mode. Micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) provided better separation than capillary zone electrophoresis (CZE), and, under optimal conditions, fourteen peaks were detected using UV detection. In ESI, the interference of SDS was less severe in positive ion mode than in negative ion mode. Up to 20 mM SDS could be used in direct coupling of MEKC with ESI-MS if the mass spectrometer was operated in positive ion mode. Because of better resolution in MEKC, adulterants can be identified without the use of MS/MS.  相似文献   

9.
On-line capillary electrophoresis (CE) separations are shown for a synthetic peptide mixture and a tryptic digest of human hemoglobin in an uncoated fused-silica capillary with detection using atmospheric pressure ionization mass spectrometry (API-MS). The CE system utilized a 1-m capillary column of either 75- or 100-microns I.D. These somewhat larger inside diameters allow higher sample capacities for MS detection and the 1-m length facilitates connecting the CE column to the liquid junction-ion spray interface and MS system. Low volatile buffer concentrations (15-20 mM) of ammonium acetate or ammonium formate, and high organic modifier content (5-50%) of methanol or acetonitrile facilitates ionization under electrospray conditions. This study shows that peptides separated by CE may be transferred to the API-MS system through a liquid junction coupling to the pneumatically assisted electrospray (ion spray) interface at low buffer pH when the electroosmotic flow is low (0-0.04 microliter/min). CE-MS as described herein is facilitated by features in modern CE instrumentation including robotic cleaning and pressurization of the capillary inlet. The latter is particularly useful for repetitive rinsing and conditioning of the capillary column between analyses in addition to continuous 'infusion' of sample to the mass spectrometer for tuning purposes. In addition to facile molecular weight determination, amino acid sequence information for peptides may be obtained by utilizing on-line tandem MS. After the tryptic digest sample components enter the API-MS system, the molecular ion species of individual peptides may be focussed and transmitted into the collision cell of the tandem triple quadrupole mass spectrometer. Collision-induced dissociation of protonated peptide molecules yielded structural information for their characterization following injection of 10 pmol of a tryptic digest from human hemoglobin.  相似文献   

10.
The applicability of a capillary zone electrophoresis–electrospray ionisation tandem mass spectrometric (CZE–ESI-MS–MS) method for the separation of nine fluoroquinolones was investigated. Method optimisation involved systematic trouble-shooting starting with the type and duration of capillary pre-washing and conditioning, the choice of both the CE run buffer, MS sheath liquid, CE run potential, ESI spray voltage, sheath gas flow-rate, MS capillary voltage and CE capillary and MS capillary temperatures. Another extremely important factor was found to be the degree to which the CE capillary protrudes into the ESI chamber as well as whether or not sheath gas and spray voltage are employed during the CE injection or not. The importance of the latter has, to our knowledge, not been addressed elsewhere. Nine fluoroquinolones have been separated and detected in a single run by this technique.  相似文献   

11.
Capillary electrophoresis (CE) separations are reported for sulfonamides and benzodiazepines in an uncoated fused-silica capillary. The capillary column exit was connected to a liquid junction-ion spray interface combination coupled to an atmospheric pressure ionization (API) triple quadrupole mass spectrometric (MS) system. On-line UV detection occurred 20 cm from the inlet of the capillary and with the API mass spectrometer (CE-API-MS) after the entire length of the capillary (100 cm). The separations were made using volatile buffers composed of ammonium acetate (15-20 mM) with 15-20% of methanol to facilitate ionization under electrospray conditions. This study showed that the major metabolite of flurazepam in man, N-1-hydroxyethylflurazepam, could be detected and characterized in human urine by CE-UV-MS following the administration of a single oral dose of 30 mg of flurazepam dihydrochloride. The presence of additional flurazepam metabolites in human urine was observed by using the system, suggesting that a combination of UV with MS detection should be useful for metabolic studies. In addition to molecular weight determination of compounds, structural information may be obtained by utilizing online tandem mass spectrometry (CE-UV-MS-MS). This was demonstrated for sulfamethazine where the protonated molecule species was transmitted into the collision cell of the tandem triple quadrupole mass spectrometer. Collision-induced dissociation of the protonated sulfamethazine molecule yielded structural information characteristic of the sulfa drug following the on-column injection of 2 pmol of sulfamethazine.  相似文献   

12.
Non-covalent complexes between three derivitized cyclodextrins (CD's) and six local anesthetics were studied using capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS). The CE study was performed using the complete filling technique (CFT). A comparison between the migration data from CE and ESI-MS inclusion complex peak abundances was made representing the association between local anesthetics and CD's in the solution and the gas phase, respectively. The results from this study showed comparable behavior of the complexes in the CE and mass spectrometer, indicating similarity in the parameters controlling the stability of these complexes. Therefore, the formation of specific non-covalent complexes, as shown in this study, could be used to predict the behavior of a complexing agent with a substrate in the solution phase by observing data obtained from ESI-MS.  相似文献   

13.
Capillary liquid chromatography (LC) using a 320 microns column and a flow rate of 10 microL/min has been coupled to an ion trap mass spectrometer using electrospray ionisation (ESI) to enable the rapid and effective identification of metabolites in urine, following oral administration of a novel human neutrophil elastase inhibitor, GW311616. Metabolites were identified from their mass (MS) spectra and tandem (MS/MS) mass spectra using minimal sample (1 microL of urine) and no sample pretreatment. Sensitivity assessment has shown that both molecular weight and structural information is obtainable on as little as 5 pg of compound, making the capillary LC/ion trap system as described an ideal analytical tool for the detection and characterisation of low level metabolites in biofluids (particularly when sample volume is limited). This level of detection was unattainable using a triple quadrupole mass spectrometer operating in full-scan mode, although 200 fg on column was detected using selected reaction monitoring target analysis.  相似文献   

14.
A systematic study for the optimization and implementation of high-performance capillary electrophoresis (HPCE) in conjunction with negative ion electrospray ionization-quadrupole time of flight-tandem mass spectrometry (ESI-QTOF-MS/MS) for the analysis of complex glycolipids is described. The performance of the capillary electrophoresis (CE) and off-line CE/ESI-QTOF-MS approach has been explored for screening a complex ganglioside mixture from bovine brain. All instrumental and solution parameters demonstrated to require special adjustment and to have the most substantial effect on the CE separation, abundance of product ions produced in a low-energy collision-induced dissociation (CID) process and their detection by MS/MS, when attempting to identify and sequence single ganglioside molecular species from CE eluted fractions. Upon optimization of the experimental parameters, an efficient methodology emerged providing the general basic requirements for combined CE/ESI-MS analysis of this type of complex glycoconjugate.  相似文献   

15.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

16.
Conditions for the simultaneous determination of the three herbicides paraquat, diquat and difenzoquat and the two plant growth regulators chlormequat and mepiquat by pressure-assisted capillary electrophoresis coupled to mass spectrometry (ion-trap) using electrospray as ionisation source have been established. A 200 mM formic acid-ammonium formate buffer solution at pH 3.0 with 50% of methanol was used as carrier electrolyte. Some capillary electrophoresis-mass spectrometry parameters such as sheath liquid and sheath gas flow-rates, sheath liquid composition, electrospray voltage andthe CE capillary position were optimised. The MS and MS-MS spectra of positive ions were studied in order to obtain structural information for the confirmation of the identity. The use of labelled standards allowed to confirm fragment ions assignation. The detection limits, based on a signal-to-noise ratio of 3:1, were between 0.5 and 2.5 mg l(-1) with hydrodynamic injection (10 s) and between 1 and 10 microg l(-1) with elecrokinetic injection (20 s, 10 kV) using standards in ultrapure water. Quality parameters such as linearity and run-to-run precision (n=6) were established. Quantitation was carried out using labelled standards. The method has been applied to the analysis of contaminated irrigation water and spiked mineral water samples.  相似文献   

17.
Capillary separations interfaced to tandem mass spectrometry provide a very powerful tool for the characterization of biological macromolecules such as proteins and peptides. The development of real time data-dependent data acquisition has further enhanced the capability of this method. However, the application of this technique to fast capillary separations has been limited by the relatively slow spectral acquisition speed available on scanning mass spectrometers. In this work, an ion trap storage/reflectron time-of-flight mass spectrometer (IT/reTOF-MS) has been used as an on-line tandem mass detector for capillary high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) separations of peptide mixtures including a protein digest. By taking advantage of the nonscanning property of the time-of-flight mass spectrometer, a fast spectral acquisition rate has been achieved. This fast spectral acquisition rate, combined with a new protocol that speeds up tickle voltage optimization, has provided MS/MS spectra for multiple components in a hemoglobin digest during one liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) run. Further, the IT/reTOF-MS has the speed to provide MS/MS spectra for multiple components in a CE separation of a synthetic peptide mixture within one CE/MS/MS run.  相似文献   

18.
The profiling and identification of impurities in raw pharmaceuticals or finished drug product is an essential part of the pharmaceutical manufacturing process. Critical to this process is the ability to confirm known, expected impurities and identify new impurities. LC coupled to electrospray MS is a powerful tool that has been employed for the identification of impurities, natural products, drug metabolites, and proteins. In this study, we show how sub 2 microm porous particle LC has been coupled to hybrid quadrupole orthogonal TOF mass spectrometer to profile and identify the impurities of the common cholesterol lowering drug simvastatin. The hybrid quadrupole TOF mass spectrometer was operated by alternating the collision cell energies to allow for the rapid, facile conformation of the identity of impurities. Using this process it was possible to identify all of the common impurities of simvastatin in a single 10 min run. During the analysis a new impurity of simvastatin was detected and identified as the saturated ring form of simvastatin.  相似文献   

19.
Eighteen positional isomers of chlorophenols were separated by capillary electrophoresis (CE) and detected on-line by electrospray ionization ion-trap mass spectrometry (MS). Conditions for the coupling of CE to MS, e.g., the concentration of carrier electrolyte, the sheath liquid composition and the sheath gas flow-rate were optimized. Diethylmalonic acid (5 mM) at pH 7.25 and isopropanol-250 mM dimethylamine (80:20) as sheath liquid were used. The activation parameters for ion-trap mass spectrometric analysis of chlorophenols were optimized. The mass spectra, obtained for all the analytes, revealed that the [M-H]- ion was the base peak for all chlorophenols. Moreover, conditions for CE-MS-MS detection were established and [M-H-HCl]- ions were detected.  相似文献   

20.
Highly reliable and accurate analytical methods are needed for the determination of magnetic resonance imaging (MRI) contrast agents in complex matrices of clinical interest. We demonstrate the reliability of capillary zone electrophoresis (CZE) coupled with electrospray ionization-mass spectrometry (ESI-MS) for the analysis of MultiHance (gadobenate dimeglumine), a gadolinium-based MRI agent. A sheath liquid interface connected the CE system with an electrospray mass spectrometer equipped with an ion-trap analyzer. CZE with ultraviolet (CZE-UV) and with mass detection (CZE-MS) were compared by analyzing gadobenate dimeglumine and the free ligand diluted in water and in biological fluids (i.e., human serum and urine). The optimization of some relevant CZE-MS parameters was accomplished, like CE buffer composition, sheath liquid composition and flow, and type and length of the separation capillary. CZE-UV was highly influenced by the biological sample components, which hindered a reliable quantification of both gadobenate and free ligand in serum and urine. In CZE-MS, on the other hand, the electrophoretic runs turned out to be independent of the clinical matrices, due to the informative potential and to the selectivity of MS detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号