首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capillary electrochromatography (CEC) is a liquid phase analytical separation technique that is generally carried out with packed capillary columns by electroosmotically driven mobile phase at high electric field strength. The analytes are separated by virtue of the differences in their distribution between the mobile and stationary phases and, if charged in their electrophoretic mobilities as well. It is thus considered a hybrid of liquid chromatography and capillary electrophoresis and is expected to combine the high peak efficiency of capillary zone electrophoresis (CZE) with the versatility and loading capacity of HPLC. This review explores the potential use of on-line mass spectrometric detection for CEC. It discusses key design issues that focus on the physical and electrical arrangement of the CEC column with respect to the electrospray orifice inlet. The salient features of the sheathless, sheath flow and liquid junction interfaces that are frequently employed while coupling a CEC column to an electrospray ionization mass spectrometry system are also highlighted. Possible configurations of the CEC column outlet that would obviate the need for pressurizing the capillary column are also presented. While coupling CEC with MS both the nature of the interface and the configuration of the column outlet will determine the optimal arrangement. The review also discusses bandspreading that occurs when a connecting tube is employed to transfer mobile phase from the column outlet to the atmospheric region of the electrospray source with a concomitant loss in sensitivity. Selected examples that highlight the potential of this technique for a wide range of applications are also presented.  相似文献   

2.
Chemiluminescence detection was used in capillary electrophoresis integrated on a microchip. Quartz microchips have two main channels and four reservoirs. Dansyl-lysine and -glycine were separated and detected with bis[(2-(3,6,9-trioxadecanyloxycarbony)-4-nitrophenyl]oxalate as peroxyoxalate chemiluminescent reagent. These dansyl amino acids came into contact with the chemiluminescence reagent to produce visible light at the interface between the separation channel and chemiluminescence reagent-containing reservoir. The detection limit (S/N = 3) for dansyl-lysine was 1 x 10(-5) M, which corresponded to the very small mass detection limit of ca. 0.4 fmol. However, the concentration sensitivity in the present system was approximately two orders of magnitude lower than that in the conventional capillary electrophoresis-chemiluminescence detection system. The relative standard deviations of migration time and peak height for dansyl-lysine were 4.2 and 4.5%, respectively. A channel conditioning before every run and an appropriate control of voltages were needed for the reproducible results. The present system had advantages in rapid separation time (within 40 s), small (several 10 pI) and accurate sample injection method using a cross-shaped injector, and simplification and miniaturization of the detection device.  相似文献   

3.
A method using capillary electrophoresis-mass spectrometry (CE-MS) was developed for the structural elucidation of bupivacaine and metabolites in rat urine. Prior to CE-MS analysis, solid-phase extraction (SPE) was used for sample cleanup and preconcentration purposes. Exact mass and tandem mass spectrometric (MS/MS) experiments were performed to obtain structural information about the unknown metabolites. Two instruments with different mass analyzers were used for mass spectrometric detection. A quadrupole time-of-flight (Q-TOF) and a magnetic sector hybrid instrument were coupled to CE and used for the analysis of urine extracts. Hydroxybupivacaine as well as five other isomerically different metabolites were detected including methoxylated bupivacaine.  相似文献   

4.
This review gives an overview of applications of CE coupled to MS detection published in the literature of the last three years. The works discussed in this paper comprise a wide range of different fields of application. These include important sections such as the analysis of biomolecules, the analysis of pharmaceuticals and their metabolites in different matrices, environmental analysis, and also investigations on the composition of technical products.  相似文献   

5.
Kitagawa F  Shiomi K  Otsuka K 《Electrophoresis》2006,27(11):2233-2239
CE with indirect UV and mass-spectrometric detection was used for the simultaneous determination of arsenic acid (As(V)), arsenous acid (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA(+)), arsenobetaine (AB), and arsenocholine (AC). In the CE-indirect UV analysis, a baseline separation of arsenic species was successfully achieved by using a basic background solution (BGS) for anions and an acidic BGS for cations, respectively. The LOD values in CE-indirect UV for the individual analytes were 7.8, 12.5, 7.8, 12.5, 62.5, 125, 250, and 62.5 ppm, respectively. To achieve sensitive and selective analysis, CE coupled with ESI-MS was applied to the determination of arsenic compounds. The organic arsenic species were successfully separated with a higher sensitivity by CE-MS using the acidic BGS. The LODs in CE-MS for MMA, DMA, TMAO, TMA(+), AB, and AC were 1.0, 0.1, 0.01, 0.1, 0.01, and 0.01 ppm, respectively. In contrast, the analysis of inorganic arsenic species (As(V) and As(III)) resulted in a lower detectability in CE-MS compared to that obtained with the CE-indirect UV analysis. However, the speciation of eight arsenics by CE-MS was successfully achieved in a single run by switching the ESI polarity during MS detection.  相似文献   

6.
Smith RD  Udseth HR  Loo JA  Wright BW  Ross GA 《Talanta》1989,36(1-2):161-169
Capillary-electrophoresis methods are attracting interest owing to the ability to yield rapid high-resolution separations, but many aspects, such as sample injection, separation conditions and detection, need further development. Effects related to sample injection and buffer composition have been investigated. Automated methods for electromigration injection of nl-size sample volumes are shown to give a precision of approximately +/-1%. Problems encountered with manual injection procedures have been examined by an electric field reversal technique. The effect of buffer pH on capillary zone-electrophoresis (CZE) separations can be attributed to changes in electro-osmotic flow velocities and to changes in the isoelectric points of analytes. The interfacing of capillary electrophoresis with mass spectrometry is described and demonstrated for a range of conditions, with a quaternary phosphonium salt mixture. Separations obtained by CZE and capillary isotachophoresis are compared and the relative advantages of the two techniques discussed.  相似文献   

7.
Vitamin B12, cobalt protoporphyrin, manganese protoporphyrin, and zinc protoporphyrin were separated using capillary electrophoresis, and a comparison was made between detection with inductively coupled plasma mass spectrometry (ICP-MS) and UV detection. Absolute limits of detection were slightly better with ICP-MS detection than with UV detection, but for both methods absolute detection limits were in the picogram range. The migration times of the analytes decreased by several minutes when ICP MS detection was employed, and this phenomenon was believed to be a result of a "suction effect" that developed when the CE capillary was interfaced to the ICP-MS nebulizer. However, the resolution between species containing the same metal atom was not altered significantly, and the separation was completed in much less time relative to separations performed with UV detection.  相似文献   

8.
We describe the current state of the on-line combination of capillary electrophoresis (CE) electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS), and discuss aspects of the FTICR technique relevant to its use as a detection scheme for on-line separations. Aspects including sensitivity, mass resolution, duty cycle, and tandem mass spectrometric capabilities are discussed in the context of online separations with examples from the authors' laboratory.  相似文献   

9.
A new method for the determination of selenomethionine (SeMet) was developed using capillary electrophoresis on-line coupled with electrochemiluminescence detection. The effects of several factors such as detection potential, concentration and pH of phosphate buffer, separation voltage and injection voltage were investigated. Under optimal conditions, the linear concentration range for SeMet was 0.001 to 0.8 μg mL?1 with a correlation coefficient of 0.9996. The limit of detection (S/N?=?3) was 0.39 ng mL?1. The recovery of SeMet in selenium-enriched yeast (SEY) was 98.6% on an average. The method presented is simple, quick, sensitive and can be reliably applied to the determination of SeMet in SEY.  相似文献   

10.
Klampfl CW  Ahrer W 《Electrophoresis》2001,22(8):1579-1584
A method for the quantitative determination of free amino acids in infant food samples using capillary electrophoresis (CE) with electrospray-mass spectrometric (ESI-MS) detection is presented. According to the zwitterionic nature of the analytes, two different modes of separation as well as detection were tested; highly acidic carrier electrolytes combined with MS detection in the positive ion mode proved to be the optimum solution. Sensitivity as well as linearity of the method were sufficient to allow the analysis of all solutes of interest in a single run. In this way, free amino acids could be analyzed in a variety of infant food preparations without any sample pretreatment or derivatization step.  相似文献   

11.
A method for the determination of the major components of (methoxymethyl)melamine resins, with quantitative analysis of unreacted melamine by capillary zone electrophoresis (CZE) using electrospray ionization-mass spectrometry (ESI-MS) is presented. Using a low background electrolyte (BGE) pH, components are separated according to their charge/ionic radius ratio with a distinctly different separation selectivity compared to the HPLC methods commonly employed in melamine-resin analysis. The use of a time-of-flight mass spectrometer (TOF-MS) was concluded to be necessary, as the complex samples studied required maximum sensitivity and resolution, which is clearly superior for TOF-MS detectors over their quadrupole counterparts. A standard curve of free melamine was determined with an R(2) = 0.999 over a concentration range of an order of magnitude. This method offers the unique separation selectivity of CZE as well as a quicker analysis time, especially for dimers compared to the HPLC methods used to date.  相似文献   

12.
Stutz H  Bordin G  Rodriguez AR 《Electrophoresis》2004,25(7-8):1071-1089
A capillary zone electrophoresis (CZE) method with preceding cationic transient capillary isotachophoresis (tCITP-CZE) was developed for uncoated fused-silica capillaries to analyze metal-binding proteins (MBPs) of clinical relevance. UV detection was followed by mass spectrometry (MS). Optimization was done with model proteins of properties similar to relevant human MBPs. Using 1.0 mol x L(-1) formic acid (pH 1.78) as electrolyte resulted in up to 165000 plates m(-1) in CZE and 230000 plates m(-1) in combination with tCITP and analysis time was less than 5 min in uncoupled mode. Cationic tCITP with 125 mmol x L(-1) ammonium formate, buffered to pH 4.00, as leading electrolyte improved sample loadability considerably in comparison with sample stacking without impairing resolution. Following systematic optimization of the electrospray ionization process (ESI) the coupled system ((tCITP)-CZE-UV-ESI-MS) was tested with protein model mixtures and human MBPs. Repeatability of migration times was < 0.64% in pure CZE mode and in tCITP-CZE mode and < 0.83% in CZE-ESI-MS coupled mode. Mass accuracy was < 0.015%. Limits of detection were found to be in the range 50-160 fmol.  相似文献   

13.
A miniaturised technique to analyse and detect heterocyclic aromatic amines (HAs) using micro solid-phase extraction (SPE) coupled on-line (in-capillary) to capillary electrophoresis (CE) separation with nanospray (nESI) mass spectrometry (MS) detection has been developed. HAs are mutagenic and carcinogenic compounds formed at low levels in protein-rich food during cooking. Due to the low concentrations of HAs and the high complexity of the matrix in which they exist, sensitive and selective analytical methods are required for quantification. SPE was performed on a packed bed of C18 particles inside the CE capillary, which minimised the dead volume. The on-line coupling of SPE, CE and nESI-MS reduced the time for extraction and identification to less than half an hour, which will allow for screening of several samples per day. The new technique provides short analysis time, low sample and solvent consumption, and HAs in standard solutions were easily detected at 12–17 fmol injections, and in spiked urine samples at 750–810 fmol injections.  相似文献   

14.
15.
A method for the determination of underivatized carbohydrates using capillary electrophoresis (CE) with detection by electrospray ionization-mass spectrometry (ESI-MS) presented. Highly alkaline carrier electrolytes based on volatile organic bases like is diethylamine (DEA) combined with MS detection in the negativ-ion mode proved to be the optimum solution for the separation and detection of these analytes. Optimization of the carrier electrolyte composition has been performed with respect to its pH, ionic strength as well as the addition of an organic modifier. The influence of the DEA concentration in the sheath liquid on parameters like peak shapes or signal-to-noise (S/N) ratios was also investigated. Limits of detection (LOD) were in the range of 0.5-3.0 mgL(-1) and calibration was linear over an order of magnitude for almost all solutes investigated. Finally, the applicability of this method for the analysis of real samples was demonstrated with wine samples.  相似文献   

16.
An on-line electrochemistry/electrospray mass spectrometry system (EC/MS) is described that allows fast analysis of the oxidation products of peptides. A range of peptides was oxidized in an electrochemical cell by application of a potential ramp from 0 to 1.5 V during passage of the sample. Electrochemical oxidation of peptides was found to occur readily when tyrosine was present. Tyrosine was found to be oxidized between 0.5 and 1.0 V to various oxidation products, including peptide fragments formed by hydrolysis at the C-terminal side of tyrosine. The results confirm earlier knowledge on the mechanisms and reaction products of chemical and electrochemical peptide oxidation. Methionine residues are also readily oxidized, but do not induce peptide cleavage. At potentials higher than about 1.1 V, additional oxidation products were observed in some peptides, including loss of 28 Da from the C-terminus and dimerization. The tyrosine-specific cleavage reaction suggests a possible use of the EC/MS system as an on-line protein digestion and peptide mapping system. In addition, the system can be used to distinguish phosphorylated from unphosphorylated tyrosine residues. Four forms of the ZAP-70 peptide ALGADDSYYTAR with both, either or neither tyrosine phosphorylated were subjected to a 0-1.5 V potential ramp. Oxidation of, and cleavage adjacent to, tyrosine was observed exclusively at unphosphorylated tyrosine residues.  相似文献   

17.
A fast, selective capillary electrophoresis (CE) method was developed for piperazine counter-ion analysis and applied to the analysis of an active pharmaceutical ingredient (API) that exists as a hemipiperazine salt. Due to the poor chromophore, the detection method chosen was indirect UV detection using benzylamine as the UV absorbing probe. Piperazine quantitation was performed using diethylamine as an internal standard and the method was validated for specificity, linearity, precision, and accuracy. The results indicate the method is suitable for piperazine counter-ion analysis in support of salt form characterization.  相似文献   

18.
A capillary electrophoresis (CE) assay has been developed for the quantitation and determination of the impurity profile of the potassium channel blockers 3,4-diaminopyridine and 4-aminopyridine. The compounds were separated from related substances using a capillary of 30 cm effective length, a 50 mM phosphate buffer, pH 2.5 and an applied voltage of 25 kV. The assay was validated with respect to specificity, linearity, range, limits of quantitation and detection, precision and robustness. The method allows the detection and quantitation of impurities at the 0.05% level. The feasibility of the assay was demonstrated by analyzing a commercial sample of 3,4-diaminopyridine. All known related substances could be detected in this sample with the present CE method.  相似文献   

19.
A method for the quantitative determination of seven major antidepressants in surface waters and sewage treatment plant effluents by CE using ESI-MS is presented. Calibration curves for the selected analytes were prepared in Milli-Q purified water and Danube river water extract covering a concentration range of at least one order of magnitude. LODs achieved were between 6 and 13 microg/L for Trazodone and 39 and 53 microg/L for Sertraline in the Milli-Q purified water and Danube river water matrix, respectively. For sample preparation eight different SPE materials were investigated. Best results were obtained for a resin based on hydrophilic divinylbenzene (recoveries from Milli-Q purified water 93-96%; from Danube river water 85-99%). Finally, a series of eight sewage treatment plant effluents were investigated with respect to their content in the selected antidepressants. Six of these samples were tested positive for antidepressants, in particular Venlafaxine, Citalopram and Trazodone in concentrations between 36 and 322 ng/L.  相似文献   

20.
Williams  R. C.  Edwards  J. F.  Ainsworth  C. R. 《Chromatographia》1994,38(7-8):441-446
Summary Micellar electrokinetic capillary chromatography (MECC) has been applied to the separation and analysis of diastereoisomer impurities in chiral pharmaceutical compounds. Differences in separation mechanism and selectivity make MECC useful as an alternative method to HPLC for analysis of these synthetic inpurities. Advantages of MECC include high efficiency separations and low consumption of sample and solvents. Water soluble and insoluble pharmaceutical compounds are used to illustrate the separation characteristics and quantitative capabilities of this versatile new analytical technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号