首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
煤及水煤浆沸腾燃烧过程中 NO_x 的生成及脱硫的研究   总被引:1,自引:0,他引:1  
试验是在两个沸腾燃烧试验台架上进行的,测定了沸腾燃烧煤和水煤浆时NO沿床高的变化规律。沸腾燃烧属低温燃烧,试验证明其NO_x 排放量比火炬燃烧时低一半,而烧水煤浆时比烧煤还低20%。结果还表明,在沸腾炉中加入石灰石脱硫的最佳炉温为850°—900℃,Ca/S 比在2—3之间。由于沸腾燃烧水煤浆时出现结团现象,故不但燃烧效率较高,而且加石灰石脱硫效率也比烧煤时高20%,因此水煤浆是一种有前途的清洁代用流体燃料。  相似文献   

2.
利用管式炉反应器在550-1 000℃对长治贫煤和脱矿物质煤分别在空气和O_2/CO_2气氛进行了燃烧实验。利用XRF、XRD等分析手段,对煤样的基本性能进行了分析表征,并采用热分析仪(TG-DTG)以及傅里叶红外气体分析仪(AntarisIGS)对贫煤燃烧过程中的燃烧特性和SO_2和NO_x释放规律进行了研究。结果表明,与原煤相比,脱矿物质煤的着火温度和燃烬温度有所降低;O_2/CO_2气氛下,原煤和脱矿物质煤的着火温度和燃烬温度都升高,说明当O_2浓度为20%时,空气气氛比O_2/CO_2气氛更易于着火和燃烬。此外,与长治原煤相比,脱矿物质煤在相同条件下燃烧时SO_2的释放量明显提高,而NO_x的释放量却有所降低。O_2/CO_2气氛下原煤燃烧时SO_2浓度比空气气氛下的要高,而脱矿物质煤燃烧时释放的SO_2浓度明显比空气气氛下的低;O_2/CO_2气氛下原煤和脱矿物质煤燃烧时释放的NOx浓度比空气气氛下燃烧时释放的NO_x浓度要低。  相似文献   

3.
煤燃烧过程生成氮氧化物前驱体的研究   总被引:5,自引:1,他引:5  
对煤中氮在燃烧条件下生成NOx前驱体(HCN、NH3)进行了研究。实验采用石英玻璃管流化床反应系统,测定了神木煤、澳大利亚烟煤、澳大利亚褐煤在400 ℃~900 ℃HCN、NH3的生成,用离子色谱测定了HCN、NH3的生成量,用差热分析测定了三种煤的燃烧峰温及起始燃烧温度。实验结果表明,在燃烧条件下煤中氮转化为HCN、NH3的比例很高,这一释出过程伴随着煤燃烧过程而发生; 在400 ℃~500 ℃燃烧时HCN、NH3的生成量占煤中总氮质量分数的50%~70%,无论是煤挥发分还是半焦中的氮都在此条件下转化生成了HCN、NH3, 这一实验规律与热解条件的实验结果不同。煤样在更高的温度下燃烧(>700 ℃)时,气体产物中的HCN、NH3的质量分数很少,这是HCN、NH3进一步氧化生成了NOx的缘故。  相似文献   

4.
煤燃烧过程中氟析出特性与生成机理   总被引:8,自引:2,他引:8  
通过建立的固定床管式炉煤燃烧氟析出试验装置,研究了煤燃烧过程中气态氟的排放特性,并根据燃煤氟析出等温动力学实验建立了气态氟生成动力学模型。结果表明:氟析出率随燃烧温度的升高而逐渐增加,煤中氟在300 ℃~400 ℃开始析出,500 ℃~1 100 ℃为主要析出温度范围;氟析出率随煤在炉内停留时间的增加而增加,但前5 min为主要析出阶段;炉内还原性气氛对氟析出有一定的影响;氟析出率与煤中氟赋存形态和含氟量有关。燃煤过程中氟析出过程可用一级反应动力学描述,反应活化能E和频率因子A依赖于煤中氟的赋存形态和氟化物的热稳定性。不同煤种E为28.0 kJ·mol-1~65.1 kJ·mol-1,A为12.5 min-1~46.0 min-1。  相似文献   

5.
在高温管式电加热炉上进行了三种煤单独燃烧,三种煤添加1%、3%、5%溴化钙与醋酸钙燃烧,以及一种煤添加Fe2O3燃烧实验,燃烧温度为1 250℃。收集了各燃烧过程的飞灰,对收集的飞灰进行了Hg含量测定,并对飞灰进行了比表面积、EDS与XRD表征。实验与分析结果表明,三种煤燃烧后Hgp的生成特性显著不同;三号煤灰的比表面积最大但飞灰颗粒Hg含量及Hgp比率均很低;在添加CaBr2后,三种煤飞灰颗粒Hg含量及Hgp比率均显著增加;在三种煤中添加醋酸钙,及在三号煤中添加Fe2O3后,Hgp含量与比率有所增加,但增加幅度较小。  相似文献   

6.
煤燃烧过程中SO2,NO的逸出规律研究   总被引:6,自引:0,他引:6  
研究了脱灰煤、负载FeCl3煤及几种没变质程度的原煤在程序升温燃烧过程中SO2、NO的逸出规律,结果表明:FeCl3对煤中某些有机硫的逸出有抑制作用,同时使NO的逸出总量大大降低;不同曙速率对SO2、NO的逸出峰型基本没有影响,但低的升温速度线下SO2、NO能够在较低的温度下逸出。  相似文献   

7.
煤热解过程中生成氮化物的研究   总被引:21,自引:8,他引:21  
使用管式反应器在600℃-900℃范围内考察了温度和煤种等对煤中氮热解转化成HCN和NH3的影响。实验结果表明:热解的温度越高,气相产物中的HCN和NH3的生成量越大;煤化程度越高,煤中氮转化为HCN的量越少;惰质组含量较高的煤样,热解生成的NH3较多。在这些实验的基础上,对煤种和惰质组含量对氮氧化物前驱体生成的影响进行了初步的探讨。  相似文献   

8.
煤燃烧过程中表面形态变化规律的研究   总被引:5,自引:4,他引:5  
以分形几何为理论工具,采用低温氮气吸附法,对四种煤在低温燃烧过程中表面形态变化作了考察。通过对原煤及燃烧过程中煤焦表面分维的测定,结合实验中所测得的比表面积,分析得到了煤燃烧过程中表面结构的变化历程,揭示出此种气因多相瓜在具有分形动力学的行为特征。  相似文献   

9.
煤和油页岩燃烧过程的对比   总被引:3,自引:0,他引:3  
利用改装热重差热仪,对抚顺、茂名油页岩、黄县褐煤和大同烟煤进行了燃烧实验,考察了粒径、燃烧终温、样品种类等因素对燃烧过程的影响。样品粒径范围为2—8mm,升温速率范围为350—600℃/min,燃烧终温为750—900℃。结果表明,在不到2min的升温段,油页岩燃烧转化率可达90%以上,而煤仅为30—50%,其值与煤的挥发份分析值基本一致。  相似文献   

10.
药渣热解过程NO_x前驱物生成特征及规律研究   总被引:1,自引:0,他引:1  
以凉茶药渣(HTW)和青霉素菌渣(PMW)为对象,结合热重(TGA)和X射线光电子能谱(XPS)表征,在水平管式反应器上对比研究了热解NO_x前驱物的生成特征,考察了热力因素和燃料理化特性的影响。结果表明,蛋白质N为主要原料N结构,HTW占全部,PMW超过80%,决定了主导NO_x前驱物为NH_3;热力因素不改变此主导性,但会影响前驱物生成路径,改变组分比例及总产率,其强弱顺序为:高温快速高温慢速低温快速≈低温慢速;基于高温快速热解,大粒径和低含水率可分别降低总产率5%-11%和4%-6%;燃料组分影响NH_3产率,低温或慢速下,N结构差别使PMWHTW;高温快速下,灰分元素差异使PMWHTW;半焦N结构及N分布表明,典型热解条件下总产率为20%-45%,与药渣种类无关,可为其清洁利用提供参考。  相似文献   

11.
配煤燃烧过程中煤灰熔融性研究   总被引:6,自引:3,他引:6  
采用灰熔点较低的神华煤和较高的准格尔煤以及这两种煤组成的混煤在沉降炉内进行实验,模拟实际电站锅炉内结渣的形成过程。采用SEM、XRD技术对煤粉和灰渣的微观形貌和晶相成分进行分析。结果表明,准格尔煤粉中包含的大量高岭石和勃姆石为莫来石的大量生成提供了条件,神华煤中不含勃姆石,高岭石的含量也不多,莫来石的生成量很少。莫来石在高温下遇到石灰石的分解产物CaO,要与之反应生成钙长石,这是神华煤灰渣中没有检测到莫来石衍射峰的主要原因。莫来石是一种高熔点矿物(1850℃),能显著改善煤灰的熔融温度,神华煤灰渣中不含莫来石,灰渣中缺少大量能在其熔融过程中发挥“骨架”作用的成分,这是导致神华煤灰熔融温度较低的一个重要原因。  相似文献   

12.
制备了负载硅溶胶的CaSO4载氧体,并对其与CH4、CO和H2的反应特性进行了研究表征。采用管式炉实验系统,对PVC在基于CaSO4载氧体的化学链燃烧和空气燃烧两种方式下,二噁英的生成特性进行了实验研究。结果表明,负载了硅溶胶的CaSO4载氧体与CH4、CO和H2反应均接近完全转化,其中,与CH4和H2的反应时间显著短于CO。采用化学链燃烧方式可有效抑制PVC燃烧过程二噁英的生成,其生成量和毒性当量分别由空气燃烧中的34 172.5 pg/g及732.8 pg(I-TEQ)/g降到化学链燃烧的2 270.9 pg/g及290.2 pg(I-TEQ)/g,这主要是因为化学链燃烧过程中燃料与O2不直接接触,显著减少了大分子碳结构的氧化断裂以及HCl向Cl2的转化,从而抑制了二噁英的低温从头合成反应和前驱物生成反应。  相似文献   

13.
通过热力学平衡模拟计算煤燃烧过程中铍的形态转化,采用高温真空管式炉进行含铍化合物与矿物的固固反应实验,以及富铍煤中加入添加剂的燃烧实验,通过X射线衍射仪(XRD)、X射线荧光探针(XRF)以及电感耦合等离子质谱仪(ICP-MS)揭示煤燃烧过程中铍的迁移转化规律。结果表明,模拟计算发现铍只与含铝化合物反应生成BeAl_2O_4和Be Al6O10,同时固固反应实验也印证了这一结论,但反应温度在1 000℃左右,明显高于模拟计算温度650℃。添加Al_2O_3的富铍煤在燃烧时,由于铍与Al_2O_3发生反应,铍的释放率明显降低,最高降低33%以上;添加了伊利石的富铍煤,由于伊利石与铍的反应温度高于Al_2O_3,其抑制作用弱于Al_2O_3;而高岭石由于与铍的反应温度过高,在高岭石与铍发生反应产生抑制效果之前,部分铍已经在燃烧过程中释放出去,因此,抑制效果最差。  相似文献   

14.
煤中微量元素在燃烧过程中的变化   总被引:16,自引:6,他引:16  
在分析微量元素燃烧过程中迁移变化机理的基础上,对电厂用煤和煤灰进行了采样测试,分析了电厂燃煤过程中微量元素的析出变化及在各种灰中的分布富集规律,同时用五个不同的温度段分别对煤进行了燃烧实验,研究了在不同温度下,微量元素从煤中析出的浓度和析出率,通过实验分析,。多数有害微量元素在飞灰中的富集浓度高于其它灰中,燃烧时温度的高低是影响微量的高低是影响微量元素迁移析出的重要因素,温度越高,有害微量元素析出率相对越大。  相似文献   

15.
煤燃烧脱硫过程中含硫阴离子色谱分析   总被引:2,自引:0,他引:2  
建立了煤燃烧脱硫过程中主要含硫阴离子及常见无机阴离子的快速离子交换色谱分离和定量方法。以0.8mmol/L邻苯二甲酸氢钾作流动相,非抑制型电导检测法检测SO3^2-和SO4^2-的下限浓度分别为0.5mg/L和1.0mg/L。所建立的分析方法被用于脱硫方法的研究。同时,验证了甲醛溶液作为SO3^2-保护剂的机理是甲醛与SO3^2-形成了稳定的配合物。  相似文献   

16.
以宁武煤田两个洗煤厂原煤及洗选产物为研究对象,采用微波消解与氢化物发生-原子荧光光谱相结合方法考察了洗煤过程硫和砷迁移规律,采用砷质量平衡验证的逐级化学提取法探讨了原煤、精煤、矸石、洗中煤和煤泥燃烧后硫和砷形态转化与释放特性及其依赖性。原煤中20%-28%硫和砷迁移至精煤中,46%-61%迁移至矸石中,Pearson相关系数结果表明,样品中无机矿物质是硫和砷迁移的控制因素。精煤中有机硫和砷提高至30%-50%,而矸石中无机硫和砷占比达90%以上,说明原煤及洗选产物中砷与硫赋存形态具有一定相关性。精煤中较多的有机硫和砷在500℃以下伴随水分和挥发分析出呈现明显释放特征,矸石中以无机态为主的砷则主要在500-1000℃伴随黄铁矿和硫酸盐等矿物质分解与硫一起释放,体现了原煤及洗选产物燃烧时硫与砷释放的同步性。精煤中硫和砷释放速率最快,300和200 s分别达到最大释放率80%-95%和60%-75%;矸石中最慢,300 s时砷达到最大释放率40%-45%,而硫600 s时仍未达最大释放率;洗中煤和原煤介于精煤和矸石之间,样品燃烧时硫和砷赋释放速率差异是由其固有赋存形态差异所致。  相似文献   

17.
应用量子化学密度泛函理论B3LYP方法,研究了砷与氮氧化物(N_2O、NO_2和NO)的反应机理。全参数优化了各反应物、中间体、过渡态和产物的几何构型,通过频率分析证实中间体和过渡态的真实性,并通过内禀反应坐标(IRC)计算以进一步确定过渡态。为了得到更精确的能量信息,在B2PLYP水平下计算各结构的单点能,并通过动力学参数深入分析其反应机理。结果表明,砷与三种氮氧化物(N_2O、NO_2和NO)的反应能垒分别为78.45、2.58、155.85 k J/mol。在298-1800 K,各反应速率随温度的升高而增大。由于砷与NO_2的反应能垒较低,其反应速率大于1012cm3/(mol·s),说明该反应容易发生且速率极快。砷与N_2O和NO的反应,在298-900 K,反应速率随温度的升高明显增加;当温度进一步升高,其增加的趋势有所减缓。  相似文献   

18.
对几种煤和城市固体废弃物(MSW)如PVC和纤维素中的主要可燃成分进行了实验研究,热重-质谱-红外(TGA/MS/FTIR)分析以原料和其混合物为对象,收集得到的燃烧特征图显示出不同的热力学行为。结果表明共燃中快速加热比慢速加热形成有机化合物的可能性要大,管式炉中的实验表明在MSW燃烧过程中Cl2是生成有机氯化物的重要媒介,提出的形成机理包括Deacon反应,用纯有机化合物进行的实验证实此反应为一可能的途径。燃烧过程中SO2对Cl2生成的作用也被检查,结果表明SO2的加入可以降低Cl2的生成量,从而大大减少有机氯化物的生成。  相似文献   

19.
在3.2 MW 卧式炉中对污泥水煤浆和大同烟煤水煤浆进行了对比燃烧实验,分别研究了煤浆的着火、燃烧、结渣及污染物排放特性。结果表明,掺混 10%污泥的水煤浆着火容易,燃烧稳定,炉膛火焰分布均匀,燃烧和结渣特性均优于大同烟煤水煤浆。污泥的添加使水煤浆燃烧烟气中SO2和NOx的浓度偏高,实际应用中可通过加入固硫剂等方式缓解。污泥水煤浆在卧式炉中的燃烧状况较理想,为城市污泥资源化利用提供了一条可行的新途径。  相似文献   

20.
煤在燃烧过程中破碎模型的建立   总被引:4,自引:2,他引:4  
针对煤在燃烧过程中破碎行为,建立了单颗粒煤的一维破碎模型。模型结果显示:煤在燃烧过程中的起始破碎主要是由于煤所释放的挥发分在煤粒中的集聚,造成煤粒中产生较大的压力梯度,从而引起煤粒的破碎。这就较好地解释了煤在燃烧过程中的热破碎现象,为今后预测煤在炉内的粒度分布打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号