首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The quality of GaN epilayers grown by molecular beam epitaxy on substrates such as sapphire and silicon carbide has improved considerably over the past few years and in fact now produces AlGaN/GaN HEMT devices with characteristics among the best reported for any growth technique. However, only recently has the bulk defect density of MBE grown GaN achieved levels comparable to that obtained by MOVPE and with a comparable level of electrical performance. In this paper, we report the ammonia-MBE growth of GaN epilayers and HFET structures on (0 0 0 1)sapphire. The effect of growth temperature on the defect density of single GaN layers and the effect of an insulating carbon doped layer on the defect density of an overgrown channel layer in the HFET structures is reported. The quality of the epilayers has been studied using Hall effect and the defect density using TEM, SEM and wet etching. The growth of an insulating carbon-doped buffer layer followed by an undoped GaN channel layer results in a defect density in the channel layer of 2×108 cm−2. Mobilities close to 490 cm2/Vs at a carrier density of 8×1016 cm−3 for a 0.4 μm thick channel layer has been observed. Growth temperature is one of the most critical parameters for achieving this low defect density both in the bulk layers and the FET structures. Photo-chemical wet etching has been used to reveal the defect structure in these layers.  相似文献   

2.
We describe the growth of GaN on Si(1 1 1) substrates with AlxGa1−xN/AlN buffer layer by ammonia gas source molecular beam epitaxy (NH3-GSMBE). The influence of the AlN and AlxGa1−xN buffer layer thickness and the Al composition on the crack density of GaN has been investigated. It is found that the optimum thickness is 120 and 250 nm for AlN and AlxGa1−xN layers, respectively. The optimum Al composition is between 0.3<x<0.6.  相似文献   

3.
The (Pb0.90La0.10)TiO3 [PLT] thick films (3.0 μm) with a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering method. The PLT thick films comprise five periodicities, the layer thicknesses of (Pb0.90La0.10)TiO3 and PbO in one periodicity are fixed. The PbO buffer layer improves the phase purity and electrical properties of the PLT thick films. The microstructure and electrical properties of the PLT thick films with a PbO buffer layer were studied. The PLT thick films with a PbO buffer layer possess good electrical properties with the remnant polarization (Pr=2.40 μC cm−2), coercive field (Ec=18.2 kV cm−1), dielectric constant (εr=139) and dielectric loss (tan δ=0.0206) at 1 kHz, and pyroelectric coefficient (9.20×10−9 C cm−2 K−1). The result shows the PLT thick film with a PbO buffer layer is a good candidate for pyroelectric detector.  相似文献   

4.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

5.
This paper reports the growth and spectral properties of 3.5 at% Nd3+:LaVO4 crystal with diameter of 20×15 mm2 which has been grown by the Czochralski method. The spectral parameters were calculated based on Judd–Ofelt theory. The intensity parameters Ωλ are: Ω2=2.102×10−20 cm2, Ω4=3.871×10−20 cm2, Ω6=3.235×10−20 cm2. The radiative lifetime τr is 209 μs and calculated fluorescence branch ratios are: β1(0.88μm)=45.2, β2(1.06μm)=46.7, β3(1.34μm)=8.1. The measured fluorescence lifetime τf is 137 μm and the quantum efficiency η is 65.6%. The absorption band at 808 nm wavelength has an FWHM of 20 nm. The absorption and emission cross sections are 3×10−20 and 6.13×10−20 cm2, respectively.  相似文献   

6.
In this paper, we compare the properties of ZnO thin films (0 0 0 1) sapphire substrate using diethylzinc (DEZn) as the Zn precursor and deionized water (H2O) and nitrous oxide (N2O) as the O precursors, respectively in the main ZnO layer growth by atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD) technique. Surface morphology studied by atomic force microscopy (AFM) showed that the N2O-grown ZnO film had a hexagonal columnar structure with about 8 μm grain diameter and the relatively rougher surface compared to that of H2O-grown ZnO film. The full-widths at half-maximum (FWHMs) of the (0 0 0 2) and () ω-rocking curves of the N2O-grown ZnO film by double-crystal X-ray diffractometry (DCXRD) measurement were 260 and 350 arcsec, respectively, indicating the smaller mosaicity and lower dislocation density of the film compared to H2O-grown ZnO film. Compared to H2O-grown ZnO film, the free exciton A (FXA) and its three phonon replicas could be clearly observed, the donor-bound exciton A0X (I10):3.353 eV dominated the 10 K photoluminescence (PL) spectrum of N2O-grown ZnO film and the hydrogen-related donor-bound exciton D0X (I4):3.363 eV was disappeared. The electron mobility (80 cm2/V s) of N2O-grown ZnO film has been significantly improved by room temperature Hall measurement compared to that of H2O-grown ZnO film.  相似文献   

7.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

8.
Material optimisation for AlGaN/GaN HFET applications   总被引:1,自引:0,他引:1  
An optimisation of some growth parameters for the epitaxy of AlGaN–GaN based heterostructure field effect transistors (HFET) at low pressure in a new 3 * 2″ MOVPE reactor is presented. Some possible processes for the growth of semi-insulating buffers have been identified and are described. TEM analysis shows that the insulating character is not due to a high density of dislocations, whereas SIMS analysis shows that classical impurity (Si, O and C) concentrations are in the same range as in conductive undoped layers. Further studies are needed to identify the traps responsible for the compensation of the GaN layers. The properties of the two-dimensional electron gas (2DEG) located at the AlGaN–GaN interface can be tuned by modifying the characteristics of the AlGaN layer and of the insulating buffer. The best mobility (1500 cm2 V−1 s−1 for n6×1012 cm−2) is obtained when using a thick buffer layer, whereas the sheet carrier density is found to increase with the Al content in the undoped supply layer and reaches 1.1×1013 cm−2 for a composition of 24%.  相似文献   

9.
A new crystal of Nd3+:Sr3Y(BO3)3 with dimension up to 25×35 mm2 was grown by Czochralski method. Absorption and emission spectra of Nd3+: Sr3Y(BO3)3 were investigated . The absorption band at 807 nm has a FWHM of 18 nm. The absorption and emission cross sections are 2.17×10−20 cm2 at 807 nm and 1.88×10−19 cm2 at 1060 nm, respectively. The luminescence lifetime τf is 73 μs at room temperature  相似文献   

10.
YBa2Cu4O8 is a stoichiometric oxide superconductor of Tc80 K. Unlike YBa2Cu3O7−δ, this compound is free from oxygen vacancy or twin formation and does not have any microscopic disorder in the crystal. Doping with Ca raises its Tc to 90 K. The compound is a promising superconductor for technological application. Up to now, single crystals have not been grown without using specialized apparatus with extremely high oxygen pressure up to 3000 bar and at over 1100 °C due to the limited range of reaction kinetics of the compound. This fact has delayed the progress in the study of its physical properties and potential applications. We present here a simple growth method using KOH as flux that acts effectively for obtaining high-quality single crystals in air/oxygen at the temperature as low as 550 °C. As-grown crystals can readily be separated from the flux and exhibit a perfect orthorhombic morphology with sizes up to 0.7×0.4×0.2 mm3. Our results are reproducible and suggest that the crystals can be grown using a conventional flux method under ambient condition.  相似文献   

11.
Experimental results are presented for SiC epitaxial layer growths employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7×2″) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600°C. Specular epitaxial layers have been grown in the reactor at growth rates ranging from 3–5 μm/h. The thickest layer grown to date is 42 μm thick. The layers exhibit minimum unintentional n-type doping of 1×1015 cm−3, and room temperature mobilities of 1000 cm2/V s. Intentional n-type doping from 5×1015 cm−3 to >1×1019 cm−3 has been achieved. Intrawafer layer thickness and doping uniformities (standard deviation/mean at 1×1016 cm−3) are typically 4 and 7%, respectively, on 35 mm diameter substrates. Moderately doped, 4×1017 cm−3, layers, exhibit 3% doping uniformity. Recently, 3% thickness and 10% doping uniformity (at 1×1016 cm−3) has been demonstrated on 50 mm substrates. Within a run, wafer-to-wafer thickness deviation averages 9%. Doping variation, initially ranging as much as a factor of two from the highest to the lowest doped wafer, has been reduced to 13% at 1×1016 cm−3, by reducing susceptor temperature nonuniformity and eliminating exposed susceptor graphite. Ongoing developments intended to further improve layer uniformity and run-to-run reproducibility, are also presented.  相似文献   

12.
Multi-domained heteroepitaxial rutile-phase TiO2 (1 0 0)-oriented films were grown on Si (1 0 0) substrates by using a 30-nm-thick BaF2 (1 1 1) buffer layer at the TiO2–Si interface. The 50 nm TiO2 films were grown by electron cyclotron resonance oxygen plasma-assisted electron beam evaporation of a titanium source, and the growth temperature was varied from 300 to 600 °C. At an optimal temperature of 500 °C, X-ray diffraction measurements show that rutile phase TiO2 films are produced. Pole figure analysis indicates that the TiO2 layer follows the symmetry of the BaF2 surface mesh, and consists of six (1 0 0)-oriented domains separated by 30° in-plane rotations about the TiO2 [1 0 0] axis. The in-plane alignment between the TiO2 and BaF2 films is oriented as [0 0 1] TiO2 || BaF2 or [0 0 1] TiO2 || BaF2 . Rocking curve and STM analyses suggest that the TiO2 films are more finely grained than the BaF2 film. STM imaging also reveals that the TiO2 surface has morphological features consistent with the BaF2 surface mesh symmetry. One of the optimally grown TiO2 (1 0 0) films was used to template a CrO2 (1 0 0) film which was grown via chemical vapor deposition. Point contact Andreev reflection measurements indicate that the CrO2 film was approximately 70% spin polarized.  相似文献   

13.
MOVPE growth of InN on sapphire substrates is compared using two different designs of horizontal reactor. The major difference between the two designs is a variation in the reactant-gas flow-spacing between the substrate and the ceiling of the quartz chamber: 33 mm for the Type A reactor and 14 mm for Type B. Compared with the Type A reactor, the Type B reactor brings about InN films with a larger grain size. This is especially true when InN is grown at 600°C using the Type B reactor, in which case the two-dimensional (2D) growth of InN is found to be extremely enhanced. An investigation of the NH3/TMIn molar ratio dependence of the surface morphology of grown InN films using the two reactors suggests that the enhanced 2D growth is attributed to the decrease in the effective NH3/TMIn ratio in the growth atmosphere. Even using the Type A reactor, a film with enhanced 2D growth can be obtained when the NH3/TMIn ratio is considerably low (1.8×104). The enhanced 2D growth results in a smaller XRC-FWHM (full-width at half maximum of the X-ray rocking curve) (1500 arcsec), than that for a 3D-grown film (5000 arcsec).  相似文献   

14.
Ce substituted Bi1−xCexFeO3 (BCFO) films with x=0–0.15 were deposited on indium tin oxide (ITO)/glass substrates by sol–gel process annealed at 500 °C. Rhombohedral phase was confirmed by XRD study and no impure phases were observed till x=0.15. Substantially enhanced ferroelectricity was observed at room temperature due to the substitution of Ce. In the films with x=0.05 and 0.10, the double remnant polarization are 75.5 and 57.7 μC/cm2 at an applied field 860 kV/cm. Moreover, the breakdown field was enhanced in the films with Ce substitution.  相似文献   

15.
A novel approach for preparation of red-emitting europium-doped yttrium oxide phosphor (Y2O3:Eu) by using the bicontinuous cubic phase (BCP) process was reported in this paper. The BCP system was composed of anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and aqueous yttrium nitrate/europium nitrate solution. Energy dispersive spectrometer analysis revealed the homogeneous precipitation occurred in the BCP structure. Thermogravimetric analysis measurements indicated the precursor powder was europium-doped yttrium hydroxide, Y1−xEux(OH)3. Scanning electron microscopy micrographs showed the precursor powder had a primary size about 30 nm and narrow size distribution. After heat treatment in furnace above 700 °C for 4 h, high crystallinity Y2O3:Eu phosphors was obtained. However, the primary size of particles grew to 50–200 nm and the dense agglomerates with a size below 1 μm were formed. X-ray diffraction patterns indicated the crystal structure of precursor powders and Y2O3:Eu phosphors were amorphous and body-centered cubic structure, respectively. The photoluminescence analysis showed that the obtained Y2O3:Eu phosphor had a strong red emitting at 612 nm and the quenching started at a Eu concentration of 10 mol%. This study indicated that the BCP process could be used to prepare the highly efficient oxide-based phosphors.  相似文献   

16.
We have fabricated LaNiO3 and BaTiO3 films using the rf sputtering method. The LaNiO3 were deposited on Si substrates, demonstrating a (1 0 0) highly oriented structure and nanocrystalline characteristic with a grain size of 30 nm. The BaTiO3 thin films were deposited on the LaNiO3 buffer layers, and have exhibited a (1 0 0) texture with a thickness of 400 nm. A smooth interface is obtained between the LaNiO3 bottom electrode and the BaTiO3 film from cross-section observations by scanning electron microscopy. The bi-layer films show a dense and column microstructure with a grain size of 60 nm. Ferroelectric characterizations have been obtained for the BaTiO3 films. The remnant polarization and coercive field are 2.1 μC/cm2 and 45 kV/cm, respectively. The leak current measurements have shown a good insulating property.  相似文献   

17.
High-quality epitaxial YBa2Cu3O7−δ (YBCO) superconducting films with thicknesses between 0.2 and 2 μm were fabricated on (0 0 l) LaAlO3 with direct-current sputtering method. The influence of film thickness on the structure and texture was investigated by X-ray diffraction conventional θ–2θ scan and high-resolution reciprocal space mapping (HR-RSM). The films grew with strictly c-axis epitaxial, and no a-axis-oriented growth was observed up to a thickness of 2 μm. Lattice parameters of the YBCO films with different thicknesses were extracted from symmetry and asymmetry HR-RSMs. The X-ray lattice parameter method was used to determine the residual stress in YBCO films by measuring the a-, b-, c-axis strains, respectively. The results showed that YBCO films within thinner than 1 μm were under compressive stress, which was relieved increasing of film thickness. However, beyond 1 μm in thickness, YBCO films exhibited a tensile stress. Based on the experimental analysis, the variety of residual stresses in the films is mainly attributed to oxygen vacancies with thickness of YBCO film increasing.  相似文献   

18.
Effects of the oxygen partial pressure on pulsed-laser deposition of MgO buffer layers on silicon substrates were investigated. The overall growth process was monitored in situ by reflection high-energy electron diffraction (RHEED) method. It was found that the crystallinity and surface morphology of the MgO films were strongly affected by oxygen partial pressure in the deposition chamber. The oxygen-pressure dependence could be explained in terms of interactions of oxygen with species in the plume-like plasma. The MgO film obtained at an optimal oxygen-pressure range of 1×10−2–1 Pa exhibited an atomic-smooth and defect-free surface (the root-mean-square roughness being as low as 0.82 nm). For the metal–insulator–metal (MIM) structure of Au/MgO (150 nm)/TiN prepared at the optimal growth conditions achieved a very low leak current density of 10−7 A cm−2 at an electric field of 8×105 V cm−1 and the permittivity (εr) of about 10.6, virtually the same as that of the bulk MgO single crystals.  相似文献   

19.
Indium phosphide, gallium arsenide phosphide, and aluminum indium phosphide have been deposited by metalorganic vapor-phase epitaxy using tertiarybutylphosphine and tertiarybutylarsine. The effects of growth temperature and V/III ratio on the amount of silicon, sulfur, carbon, and oxygen in InP have been determined. Minimum incorporation was observed at 565 °C and a V/III ratio of 32. In this case, the material contained a background carrier concentration of 2.7×1014 cm−3, and the Hall mobilities were 4970 and 135,000 cm2/V s at 300 and 77 K. The oxygen contamination in AlInP was found to be only 9.0×1015 cm−3 for deposition at 650 °C and a V/III ratio of 35. The relative distribution of arsenic to phosphorus in GaAsyP1−y was determined at temperatures between 525 and 575 °C. The distribution coefficient [(NAs/NP)film/(PTBAs/PTBP)gas] ranged from 25.4 to 8.4, and exhibited an Arrhenius relationship with an apparent activation energy of 1.2 eV.  相似文献   

20.
The phase equilibrium and the crystallization process of lead iodide (PbI2) melt have been primarily investigated according to the lead–iodine phase diagram. It is found that the iodine evaporation and the segregated lead deposition are the two important factors that affect the PbI2 crystal quality. The new method of Pulling U-type quartz growth ampoule has been made to impede the decomposition of PbI2 and the vaporization and condensation of iodine. An orange and translucent PbI2 single crystal of large size was obtained by the improved growth method, i.e. U-type ampoule pulling. Resistivity of the as-grown crystal is up to 4×1011 Ω cm, and IR transmission is up to 45% in the region from 7800 to 450 cm−1. Therefore, the improved growth method is a promising convenient new method for the growth of high quality PbI2 crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号