首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uranyl vanadate compounds with divalent cations, M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2, were synthesized by flux crystal growth, and their crystal structures were solved using single‐crystal X‐ray diffraction data. Ca(UO2)V2O7 and Sr(UO2)V2O7 were synthesized from reactants with molar ratios M:U:V of 1:1:2 and identical heating conditions, and increasing the M:U:V ratio to 3:1:4 resulted in Sr3(UO2)(V2O7)2. Crystallographic data for M(UO2)V2O7 compounds are: a = 7.1774(18) Å, b = 6.7753(17) Å, c = 8.308(2) Å; V = 404.01(18) Å3; space group Pmn21, Z = 2 for Ca; a = 13.4816(11) Å, b = 7.3218(6) Å, c = 8.4886(7) Å; V = 837.91(12) Å3; space group Pnma, Z = 4 for Sr. Compound Sr3(UO2)(V2O7)2 has a = 6.891(3) Å, b = 7.171(3) Å, c = 14.696(6) Å, α = 85.201(4)?, β = 78.003(4)?, γ = 89.188(4)?; V = 707.9(5) Å3; space group P1 , Z = 2. The framework structure of Sr(UO2)(V2O7) is related to that of Pb(UO2)(V2O7) reported previously, while that of Ca(UO2)(V2O7) has a different topology. The topological polymorphism of the [(UO2)(V2O7)]‐type framework may be due to the differing ionic radii of the guest M2+ cations. Compound Sr3(UO2)(V2O7)2 has a modular structure based on two different types of electroneutral layers: [Sr(UO2)(V2O7)] and [Sr2(V2O7)]. Structural complexities were calculated, and Raman spectra were collected and their peaks were assigned.  相似文献   

2.
The title compound, tri­ammonium cis‐di­aqua‐cis‐dioxo‐trans‐disulfatovanadate 1.5‐hydrate, was obtained by oxidizing VIV to VV in a 2 M sulfuric acid solution of vanadyl­ sulfate and adding ammonium sulfate. Here, the V atom is sandwiched by two sulfate groups by corner‐sharing to form a discrete [VO2(SO4)2(OH2)2]3? anion. The water mol­ecules occupy cis positions in the equatorial plane of the vanadium octahedron.  相似文献   

3.
The reaction of CuBr2 with 1,10‐phen‐H2O (1,10‐phen = 1,10‐phenanthroline) gave two compounds: CuBr2(C12H8N2) and Cu3Br3(C12H8N2)2. Their structures have been characterized by single‐crystal X‐ray diffraction analysis, elemental analyses, thermogravimetric analyses (TGA) and measurement of variable temperature magnetic susceptibility. Crystal data for CuBr2(C12‐H8N2): monoclinic, space group P21/n, a = 0.9977(3) nm, b = 0.65138(14) nm, c = 1.8207(4) nm, β = 91.624(18)°, V = 1.1828(5) nm3, Z = 2. Crystal data for Cu3Br3(C12H8N2)2: monoclinic, space group C2/c, a = 1.00167(11) nm, b = 1.4523(4) nm, c = 1.6295(3) nm, β = 94.386(14)°, V = 2.3635(8) nm3, Z = 3.  相似文献   

4.
Three alkali metal acetylides, namely KNaC2, KRbC2, and NaRbC2, were synthesized and characterized by means of X‐ray powder diffraction. KNaC2 and KRbC2 crystallize as a variant of the anti‐PbCl2‐type structure (Pnma, Z = 4), whereas NaRbC2 crystallizes as a variant of the anti‐PbFCl‐type structure (Pmmn, Z = 2). Based on a simple systematic approach developed by Sabrowsky et al. for inter‐alkali metal chalcogenides all known inter‐alkali metal acetylides can be classified into two classes: variants of the anti‐PbCl2 type structure and variants of the anti‐PbFCl type structure. Acetylides with Q(ABC2) ≤ 1.45 crystallize in the anti‐PbCl2‐type structure, whereas for Q(ABC2) > 1.45 the anti‐PbFCl‐type structure is found (Q(ABC2) = Vm(A2C2)/Vm(B2C2) with Vm(A2C2) > Vm(B2C2); Vm: molar volume, A, B = alkali metals).  相似文献   

5.
Two polymorphs of a zero‐dimensional (molecular) zinc phosphate with the formula [Zn(2,2′‐bipy)(H2PO4)2]2 have been synthesized by a mild hydrothermal route and their crystal structures were determined by single crystal X‐ray diffraction (triclinic, space group (No. 2), Z = 2, α‐form: a = 8.664(1), b = 8.849(2), c = 10.113(2) Å, α = 97.37(2)°, β = 100.54(2)°, γ = 100.98(2)°, V = 737.5(3) Å3; β‐form: a = 7.5446(15), b = 10.450(2), c = 10.750(2) Å, α = 67.32(3)°, β = 81.67(3)°, γ = 69.29(3)°, V = 731.4(3) Å3). Both structures consist of distorted trigonal‐bipyramidal ZnO3N2 units condensed with PO2(OH)2 tetrahedra through common vertices giving rise to dimers [Zn(2,2′‐bipy)(H2PO4)2]2. The structures are stabilized by extensive inter‐ and intramolecular hydrogen bond interactions. Both modifications display subtle differences in their packing originating from the hydrogen bond interactions as well as π…π interactions between the organic ligands.  相似文献   

6.
The data on temperature, solvent, and high hydrostatic pressure influence on the rate of the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 1 ) with 2‐carene ( 2 ), and β‐pinene ( 4 ) have been obtained. Ene reactions 1 + 2 and 1 + 4 have high heat effects: ∆Hrn ( 1 + 2 ) −158.4, ∆Hrn( 1 + 4 ) −159.2 kJ mol−1, 25°C, 1,2‐dichloroethane. The comparison of the activation volume (∆V( 1 + 2 ) −29.9 cm3 mol−1, toluene; ∆V( 1 + 4 ) −36.0 cm3 mol−1, ethyl acetate) and reaction volume values (∆Vr‐n( 1 + 2 ) −24.0 cm3 mol−1, toluene; ∆Vr‐n( 1 + 4 ) −30.4 cm3 mol−1, ethyl acetate) reveals more compact cyclic transition states in comparison with the acyclic reaction products 3 and 5 . In the series of nine solvents, the reaction rate of 1+2 increases 260‐fold and 1+4 increases 200‐fold, respectively, but not due to the solvent polarity.  相似文献   

7.
A polymeric VIV‐Cd compound, {(NH4)2[(VIVO)22‐O)(nta)2Cd(H2O)2]·H2O}n (H3nta = nitrilotriacetic acid), has been prepared and characterized by single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group C2/c with a = 17.3760(2) Å, b = 8.0488(1) Å, c = 17.3380(2) Å, β = 107.9690(10)°, V = 2306.55(5) Å3, Z = 4, and R1 = 0.0303 for 1958 observed reflections. The structure exhibits a heterometallic three‐dimensional network formed by polymeric [(VIVO)22‐O)(nta)2Cd(H2O)2]2? anions.  相似文献   

8.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

9.
A new metal‐oxo cluster supported transition metal complex, [Cu(en)2(H2O)]2[Cu(en)2]0.5[MoVI8VIV6VVO42{Cu(en)2}], has been synthesized under hydrothermal conditions. Its structure was determined by single‐crystal X‐ray diffraction. The compound crystallizes in the triclinic system, space group (No. 2), a = 12.245(5), b = 12.669(5), c = 20.949(8) Å, α = 77.120(13), β = 78.107(17), γ = 65.560(14)°, V = 2860(2) Å3, Z = 2. The metal‐oxo cluster contains a novel bicapped a‐Keggin structure unit and a [Cu(en)2]2+ unit covalently bonded to the [Mo8V7O42]7? cluster.  相似文献   

10.
Transparent single crystals of PbSbO2Br (green), PbSbO2I, and PbBiO2Br (yellow) were obtained by solid state reactions of stoichiometric amounts of PbO, Pn2O3 (Pn = Sb, Bi) and PnX3 (X = Br, I). The crystal structures were determined from single‐crystal X‐ray data. The title compounds crystallize tetragonally in the space group I4/mmm (No. 139): Lattice constants and refinement values are: PbSbO2Br: a = 3.9463(3), c = 12.849(1) Å, V = 200.10(3) Å3, and Z = 2, R1 = 0.0236, and wR2 = 0.0513. PbSbO2I: a = 4.0074(3), c = 13.627(2) Å, V = 218.84(3) Å3, and Z = 2, R1 = 0.0244, and wR2 = 0.0538. PbBiO2Br: a = 3.9818(2), c = 12.766(2) Å, V = 202.39(4) Å3, and Z = 2, R1 = 0.0276, and wR2 = 0.0715. The compounds are isotypic and crystallize in the anti‐ThCr2Si2 structure type with lead and Pn statistically disordered on one common position. In case of Pn = Sb a slight separation of the positions of the cations becomes obvious. Optical bandgaps were determined by UV/Vis spectroscopy. They are 2.67 eV (PbSbO2Br), 2.48 eV (PbSbO2I), and 2.47 eV (PbBiO2Br).  相似文献   

11.
The D2h‐symmetric dinuclear complex anion [U2F12]2? of pastel green Sr[U2F12] shows a hitherto unknown structural feature: The coordination polyhedra around the U atoms are edge‐linked monocapped trigonal prisms, the UV atoms are therefore seven‐coordinated. This leads to a U–U distance of 3.8913(6) Å. A weak UV–UV interaction is observed for the dinuclear [U2F12]2? complex and described by the antiferromagnetic exchange Jexp of circa ?29.9 cm?1. The crystalline compound can be easily prepared from SrF2 and β‐UF5 in anhydrous hydrogen fluoride (aHF) at room temperature. It was studied by means of single crystal X‐ray diffraction, IR, Raman and UV/VIS spectroscopy, magnetic measurements, and by molecular as well as by solid‐state quantum chemical calculations.  相似文献   

12.
Through a solid‐state reaction, a practically phase pure powder of Ba3V2S4O3 was obtained. The crystal structure was confirmed by X‐ray single‐crystal and synchrotron X‐ray powder diffraction (P63, a=10.1620(2), c=5.93212(1) Å). X‐ray absorption spectroscopy, in conjunction with multiplet calculations, clearly describes the vanadium in charge‐disproportionated VIIIS6 and VVSO3 coordinations. The compound is shown to be a strongly correlated Mott insulator, which contradicts previous predictions. Magnetic and specific heat measurements suggest dominant antiferromagnetic spin interactions concomitant with a weak residual ferromagnetic component, and that intrinsic geometric frustration prevents long‐range order from evolving.  相似文献   

13.
The title compounds, [1,2‐bis(isopropylsulfanyl)ethane‐2κ2S,S′]octachlorido‐1κ5Cl,2κ3Cl‐μ‐oxido‐ditantalum(V), [Ta2Cl8O(C8H18S2)], (I), and μ‐dimethyldiselane‐κ2Se:Se′‐μ‐oxido‐bis[tetrachloridotantalum(V)], [Ta2Cl8O(C2H6Se2)], (II), contain six‐coordinate TaV centres linked by a nonlinear oxide bridge. Compound (I) contains one TaV centre bonded to a chelating dithioether and three terminal chloride ligands, with the second TaV centre bonded to five terminal chloride ligands. In (II), two tetrachloridotantalum(V) residues are bridged by the diselenide, giving a puckered five‐membered Ta/O/Ta/Se/Se ring. The Ta—O distances in the bridges are short in both compounds, indicating that significant multiple‐bond character is retained despite the deviation from linearity, and the bond lengths reveal a clear trans influence order of O > Cl > S > Se on the hard TaV centre. The structures are compared with the [Ta2Cl10O]2− anion, which contains a linear oxide bridge.  相似文献   

14.
Three mononuclear vanadium complexes containing aromatic 1, 2‐diols (catechol and naphthalene‐2, 3‐diol) ligands,[VIVO(cat)2][1, 3‐HPDA]2 · CH3OH ( 1 ), [VIVO(N‐2, 3‐D)2][1, 3‐H2PDA] ( 2 ), and [VVO2(N‐2, 3‐D)(1, 3‐HPDA)] · 1, 3‐PDA ( 3 ) (cat = catechol, N‐2, 3‐D = naphthalene‐2, 3‐diol, 1, 3‐PDA = 1, 3‐propanediamine) were synthesized and characterized by X‐ray diffraction, IR and UV/Vis spectroscopy, and cyclovoltammetry. X‐ray analysis reveals that the spatial frameworks of complexes 1 – 3 are all constructed by hydrogen bonds donated by [1, 3‐HnPDA]n+ (n = 1, 2) cation, forming distinct chain structures. Complexes 1 and 2 are both in the non‐chiral form of VO(L)2, but 2 crystallizes in the chiral space group (P6522), due to the symmetry element of spiral axis, whereas complex 3 contains both enantiomers of chiral VO2(L1)(L2) units, but crystallizes in the non‐chiral space group (P$\bar{1}$ ). The electrochemical behavior of the three complexes is studied in comparison with that of the free ligands. Complex 1 shows a pair of potentials assigned to the redox behavior of vanadium, while complexes 2 and 3 exhibit no such redox potentials. Pharmaceutical screening of complexes 1 – 3 were carried out against three representative cancer cell lines: A‐549 (lung cancer), Bel‐7402 (liver cancer) and HCT (colonic cancer) by MTT [3‐(4, 5‐dimethylthiazoyl‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] assay. The results show that the vanadium‐catechol complex 1 exhibits more obvious anti‐proliferating effects against the three cell‐lines, whereas the two vanadium‐N‐2, 3‐D complexes 2 and 3 basically display no such effects.  相似文献   

15.
Synthesis and Crystal Structure of Vanadium(III) Borophosphate, V2[B(PO4)3] By reaction of boron phosphate, BPO4, and vanadium(IV)‐oxide, VO2, at 1050 °C a hitherto unknown vanadium(III)‐borophosphate is formed. Its composition was found to be V2BP3O12, its structure was elucidated by single crystal X‐ray diffraction, the cell parameters are: a = b = 13.9882Å; c = 7.4515Å; α = β = 90°, γ = 120°; Z = 6; space group: P6 3/m. Noteworthy features of the structure are V2O9 units (two VIIIO6 octahedra connected via their faces) and isolated trisphosphatoborate groups, B(PO4)3. By shared oxide ions, the aforementioned groups are interconnected, thus forming a three dimensional network. The structural relation between the title compound and an analogous chromium compound is discussed.  相似文献   

16.
>From Small Fragments to New Poly‐alkoxo‐oxo‐metalate Derivatives: Syntheses and Crystal Structures of K4[VIV12O12(OCH3)16(C4O4)6], Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)], and M2[VIV8O8(OCH3)16(VIVOF4)] (M = [N(nBu)4] or [NEt4]) By solvothermal reaction of ortho‐vanadicacid ester [VO(OMe)3] with squaric acid and potassium or caesium hydroxide the compounds K4[VIV12O12(OCH3)16(C4O4)6] ( 2 ) and Cs10[VIV24O24(OCH3)32(C4O4)12][VIV8O8(OCH3)16(C2O4)] ( 3 ) could be syntesized. With tetra‐n‐butyl‐ or tetra‐n‐ethylammonium fluoride [N(nBu)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 4 ) and [N(Et)4]2[VIV8O8(OCH3)16(VIVOF4)] ( 5 ) could be isolated. In 2 and 3 the corners of a tetrahedron or cube resp. are occupied by {(VO)3(OMe)4} groups and connected along the edges of the tetrahedron resp. cube by six or twelve resp. squarato‐groups. The octanuclear anions in the compounds 3 , 4 , and 5 are assumedly built up by fragments of the ortho‐vanadicacid ester [VO(OMe)3]. Around the anions C2O42— or VOF4 these oligormeric chains are closed to a ring . Crystal data: 2 , tetragonal, P43, a = 18.166(3)Å, c = 29.165(7)Å, V = 9625(3)Å3, Z = 4, dc = 1.469 gcm—3; 3 , orthorhombic, Pbca, a = 29.493(5)Å, b = 25.564(4)Å, c = 31.076Å, V = 23430(6)Å3, Z = 4, dc = 1.892 gcm—3; 4 , monoclinic, P21/n, a = 9.528(1)Å, b = 23.021(2)Å, c = 19.303(2)Å, β = 92.570(2)°, V = 4229.8(5)Å3, Z = 2, dc = 1.391 gcm—3; 5 , monoclinic, P21/n, a = 16.451(2)Å, b = 8.806(1)Å, c = 23.812(1)Å, β = 102.423(2)°, V = 3368.7(6)Å3, Z = 2, dc = 1.534 gcm—3.  相似文献   

17.
Two new oxovanadium(V) complexes, [2‐MePyH][VvO2(L)] (3) and[2‐EtPyH][VvO2,(L)] (4) (salicylaldehyde 5‐bromo salicyloylhydrazone is abbreviated as H2L; 2‐MePyH is protonated 2‐Mepyridine; 2‐EtPyH presents protonated 2‐Et‐pyridine) were obtained from a reaction of VOSO4 and H2L in acetonitrile‐methanol with small quantity of 2‐Me‐pyridine or 2‐Et‐pyridine, and characterized by X‐ray diffraction and spectroscopic methods. Crystal data: [2‐MePyH][VO2(L)] (3), C20H17N3O5BrV, Mr = 510.2, monoclinic, P21/n, a = 0.7363(1) nm, 6 = 0.9514(1) nm, c = 2.8594(2) nm, β = 95.305(2)°, Z = 4 and V=1.9946(3) nm3, μ(Mo Kα) = 2.539 mm?1; [2‐EtPyH][VO2(L)] (4), C21H19N3 O3BrV, Mr = 524.2, triclinic, P1 , a = 0.8051(1) nm, b = 0.9413(1) nm, c = 1.4648(2) nm, α=99.1900(10)°, α = 99.4530(10)°, γ = 104.6670(10)°, Z = 2 and V= 1.0355(2) nm3, μ(Mo Kα) = 2.448 mm?1, X‐Ray analyses revealed that the crystal structures of 3 and 4 have similar packing modes.  相似文献   

18.
The tribarium dilithium divanadate tetrachloride Ba3Li2V2O7Cl4 is a new vanadate with a channel structure and the first known vanadate containing both Ba and Li atoms. The structure contains four non‐equivalent Ba2+ sites (two with m and two with 2/m site symmetry), two Li+ sites, two nonmagnetic V5+ sites, five O2− sites (three with m site symmetry) and four Cl sites (m site symmetry). One type of Li atom lies in LiO4 tetrahedra (m site symmetry) and shares corners with VO4 tetrahedra to form eight‐tetrahedron Li3V5O24 rings and six‐tetrahedron Li2V4O18 rings; these rings are linked within porous layers parallel to the ab plane and contain Ba2+ and Cl ions. The other Li atoms are located on inversion centres and form isolated chains of face‐sharing LiCl6 octahedra.  相似文献   

19.
VIV oxyfluorides are of interest as frustrated magnets. The successful synthesis of two‐dimensionally connected vanadium(IV) oxyfluoride structures generally requires the use of ionic liquids as solvents. During solvothermal synthesis experiments aimed at producing two‐ and three‐dimensional vanadium(IV) selenites with triangular lattices, the title compound, diaquatetra‐μ‐fluorido‐dioxidodivanadium(IV) monohydrate, V2O2F4(H2O)2·H2O, was discovered and features a new infinite V4+‐containing two‐dimensional layer comprised of fluorine‐bridged corner‐ and edge‐sharing VOF4(H2O) octahedral building units. The synthesis was carried out under solvothermal conditions. The V4+ centre exhibits a typical off‐centring, with a short V=O bond and an elongated trans‐V—F bond. Hydrogen‐bonded water molecules occur between the layers. The structure is related to previously reported vanadium oxyfluoride structures, in particular, the same layer topology is seen in VOF3.  相似文献   

20.
A simple and efficient catalytic system for Na2PdCl4 catalyzing the Suzuki‐Miyaura reaction of dibromobenzene and arylboronic acid has been developed by using 2N2O‐salen as a ligand in H2O/EtOH (V:V=4:1) at 100°C. Using this method, the reactions of substrates containing sterically demanding ortho substituents (e.g. dibromobenzene and/or arylboronic acids) proceeded efficiently, with the corresponding terphenyl derivatives being produced in moderate to excellent yields. Furthermore, this method offers interesting features for the multi‐gram scale synthesis of terphenyl compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号