首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porras SP  Kenndler E 《Electrophoresis》2004,25(17):2946-2958
A comprehensive investigation of a number of aspects when using formamide as background electrolyte solvent in capillary zone electrophoresis was presented. It included (i) the change of the ion mobility with ionic strength, (ii) the influence of the ionic strength on diffusion coefficients, and (iii) on the separation efficiency expressed by the maximum reachable plate numbers (when only longitudinal diffusion contributed to zone broadening), (iv) the effect of the solvent on pKa values (taken from the literature) of neutral and cation acids, (v) the establishment of the a pH scale in formamide by dissolving acids with known pKa values and their salts at defined proportion (thus circumventing the problem of calibrating the pH meter), (vi) the agreement between the experimentally derived and the theoretical dependence of the effective mobility on pH, (vii) the uptake of water of this hygroscopic solvent from the humidity of the environment and its consequence to the ion mobilities, pKa values, and the chemical stability of the solvent (e.g., hydrolysis), and finally (viii) the use of conductivity and indirect UV absorption to enable detection of analytes below the optical cutoff of formamide.  相似文献   

2.
Due to the short light path of the capillaries, the CE detection limit based on concentration, is far less than that of HPLC and not sufficient for many practical applications. Several methods, based on different electrophoretic maneuvers, can concentrate the sample (stack) easily on the capillary before the separation step of capillary zone electrophoresis (CZE). These methods incorporate different types of discontinuous buffers as the means for invoking different velocities to the same analyte molecules to produce a sharpening of the band (stacking). In CZE, these buffers can be often very simple such as sample dilution or adding to the sample a high concentration of a fast mobility ion. However, in other applications these buffers can be as complicated as those required for isotachophoresis. Stacking can often yield a concentration factor of 5-30-fold, which can improve greatly in CZE the detection limits bringing them very close to those of HPLC. Different methods of stacking, the importance of discontinuous buffers and the different mechanism for concentration on the capillary are reviewed here. As there is a need for more practical applications, there will be more methods devised for stacking in CZE.  相似文献   

3.
A capillary zone electrophoresis (CZE) method was developed for the rapid analysis of charge heterogeneity of immunoglobulin G (IgG) monoclonal antibodies (mAbs). The separation was carried out in a short, dynamically coated fused-silica capillary. A number of separation parameters were investigated and optimized, including pH, concentration of the separation buffer (ε-amino caproic acid), concentration of the triethylenetetramine (TETA) dynamic coating, the capillary internal diameter and the field strength used for the separation. The effects of between-run flushing of the capillary and the data acquisition rate were also evaluated. Under the optimized conditions, a fast (<5 min), selective and reproducible separation of mAb charge variants was achieved under a very high electric field strength (1000 V/cm). This method also requires only a short conditioning of the capillary, with between-run conditioning completed within 2 min. The method was evaluated for specificity, sensitivity, linearity, accuracy and precision. The same separation conditions were applied to the rapid separation (2-5 min) of charge variants of multiple monoclonal antibodies with pI in the range of 7.0-9.5. Compared with other existing methods for charge variants analysis, this method has several advantages including a short run time, rapid capillary conditioning and simple sample preparation.  相似文献   

4.
5.
Yassine MM  Lucy CA 《Electrophoresis》2006,27(15):3066-3074
Preparative capillary zone electrophoresis separations of cytochrome c from bovine and horse heart are performed efficiently in a surfactant-coated capillary. The surfactant, dimethylditetradecylammonium bromide (2C(14)DAB), effectively eliminated protein adsorption from the capillary surface, such that symmetrical peaks with efficiencies of 0.7 million plates/m were observed in 50-microm id capillaries when low concentrations of protein were injected. At protein concentrations greater than 1 g/L, electromigration dispersion became the dominant source of band broadening and the peak shape distorted to triangular fronting. Matching of the mobility of the buffer co-ion to that of the cytochrome c resulted in dramatic improvements in the efficiency and peak shape. Using 100 mM bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane phosphate buffer at pH 7.0 with a 100-microm id capillary, the maximum sample loading capacity in a single run was 160 pmol (2.0 microg) of each protein.  相似文献   

6.
Gas B  Kenndler E 《Electrophoresis》2004,25(23-24):3901-3912
When working with capillary zone electrophoresis (CZE), the analyst has to be aware that the separation system is not homogeneous anymore as soon as a sample is brought into the background electrolyte (BGE). Upon injection, the analyte creates a disturbance in the concentration of the BGE, and the system retains a kind of memory for this inhomogeneity, which is propagated with time and leads to so-called system zones (or system eigenzones) migrating in an electric field with a certain eigenmobility. If recordable by the detector, they appear in the electropherogram as system peaks (or system eigenpeaks). However, although their appearance can not be forecasted and explained easily, they are inherent for the separation system. The progress in the theory of electromigration (accompanied by development of computer software) allows to treat the phenomenon of system zones and system peaks now also in very complex BGE systems, consisting of several multivalent weak electrolytes, and at all pH ranges. It also allows to predict the existence of BGEs having no stationary injection zone (or water zone, EO zone, gap, dip). Our paper reviews the theoretical background of the origin of the system zones (system peaks, system eigenpeaks), discusses the validity of the Kohlrausch regulating function, and gives practical hints for preparing BGEs with good separation ability not deteriorated by the occurrence of system peaks and by excessive peak-broadening.  相似文献   

7.
The use of capillary zone electrophoresis (CZE) and capillary zone electrophoresis/mass spectrometry (CZE/MS) has been demonstrated, in principle, for the separation of nicotine and nicotine metabolites. The buffer system developed for separation and detection by CZE/UV was modified for use in CZE/MS analysis. Several of the metabolites are isobaric and tandem mass spectrometric (MS/MS) techniques have been used to differentiate such analytes.  相似文献   

8.
Horká M  Slais K 《Electrophoresis》2002,23(7-8):1090-1095
Pyrenebutanoate as the amphiphilic fluorescent compound is suggested as a buffer additive in capillary zone electrophoresis (CZE) for a dynamic modification of several protein samples. Using deuterium lamp UV excitation for the on-column fluorometric detection, minimum detectable amounts in the amol-range of the proteins sampled on the CZE capillary was achieved.  相似文献   

9.
Summary Para-hydroxybenzoic acid (p-HBA) has been used as indirect UV detection buffer in capillary zone electrophoresis (CZE). Being an UV-absorbing dibasic acid, p-HBA provides both the necessary buffering for pH control over a wide range and UV absorbance for indirect detection. With sodium dodecyl sulfate (SDS) as a probe, a CZE method using p-HBA solution as running buffer was developed to analyze anions, especially ones with low electrophoretic mobilities. The method was used to separate homologous series of sulfonates, SDS in a formulation sample, and SDS in a standard.  相似文献   

10.
Separation of the enantiomers of chlorpheniramine and methadone in acidic buffers containing carboxymethyl-betacyclodextrin (CMCD) as chiral selector was investigated by capillary zone electrophoresis. For a range of pH and CMCD concentrations, the mobility difference and resolution of the enantiomers were determined. Then, conditions known to provide well resolved enantiomers and optimized chiral separation were applied to chiral continuous flow electrophoresis. In that approach, a thin film of fluid flowing between two parallel plates is employed as carrier for electrophoresis. The electrolytes and the sample are continuously admitted at one end of the electrophoresis chamber and are fractionated by an array of outlet tubes at the other. The number of pure enantiomeric fractions obtained by chiral continuous flow electrophoresis was found to be directly dependent on the enantiomeric mobility difference. For racemic chlorpheniramine separated in a betaine-acetic acid buffer at a total throughput of 5 mg/h, complete enantiomeric separation is shown to require a mobility difference of about 3 x 10(-9) m2/V s. Furthermore, compared to the previous investigations with hydroxypropyl-beta-cyclodextrin, CMCD was found to permit improved fractionation of methadone enantiomers. With a total racemic drug throughput of about 15 mg/h, continuous flow zone electrophoresis processing with CMCD as chiral selector is shown to have the potential of providing pure enantiomers on a mg/h scale. The results indicate that chiral capillary zone electrophoresis data can be employed as predictor for preparative scale chiral separations based upon continuous flow zone electrophoresis.  相似文献   

11.
Enzymes immobilized on the inner surface of an electrophoretic capillary were used to increase sensitivity and resolution in capillary zone electrophoresis (CZE). Sensitivity is enhanced by inserting a piece of capillary containing the immobilized enzyme into the main capillary, located before the detector, in order to transform the analyte into a product with a higher absorptivity. This approach was used to determine ethanol. In order to improve resolution, capillary pieces containing immobilized enzymes were inserted at various strategic positions along the electrophoretic capillary. On reaching the enzyme, the analyte was converted into a product with a high electrophoretic mobility, the migration time for which was a function of the position of the enzyme reactor. This approach was applied to the separation and determination of acetaldehyde and pyruvate. Finally, the proposed method was validated with the determination of ethanol, acetaldehyde, and pyruvate in beer and wine samples.  相似文献   

12.
An indirect photometric detection method is described which is based on the use of an absorbing co-ion as the principal component of the background electrolyte. The zones of non-absorbing ionic species are revealed by changes in light absorption due to charge displacement of the absorbing co-ion. Theoretical considerations are given for selecting a suitable absorbing co-ion to achieve a high sensitivity of detection.The role of electromigration dispersion is illustrated by experiments and the effects of the differences in the effective mobilities of sample ions and that of the absorbing co-ion are discussed. The highest sensitivity can be achieved for sample ions having an effective mobility close to the mobility of the absorbing co-ion. In such a case, the concentration of the sample component in its migrating zone can be high while electromigration dispersion is still negligible. The useful dynamic range of the detection is then limited by the linearity and noise of the detector, the former parameter being given mostly by the shape of the on-column detection cell. The best sensitivities can be obtained in low-concentration background electrolytes containing a co-ion with high absorption at a given detection wavelength.It is shown that indirect photometric detection can be useful for detecting substances that have no optical absorption in the UV and/or visible region, provided that the composition of the background electrolyte is selected correctly.  相似文献   

13.
J L Beckers  P Gebauer  P Bocek 《Electrophoresis》2001,22(17):3648-3658
This paper brings an overview of system zones (SZs) in capillary zone electrophoresis (CZE) and their effects upon the migration of zones of analytes. It is shown that the formation and migration of SZs is an inherent feature of CZE, and that it depends predominantly on the composition of an actual background electrolyte (BGE). One can distinguish between stationary SZs and migrating SZs. Stationary SZs, which move due to the electroosmotic flow only, are induced in any BGE by sample injection. Migrating SZs may be induced by a sample injection in BGEs which show at least one of the following features: (i) BGE contains two or more co-ions, (ii) BGE has low or high pH whereby H+ or OH- act as the second co-ion, and (iii) BGE contains multivalent weak acids or bases. SZs do not contain any analyte and show always BGE-like composition. They contain components of the BGE only and the concentrations of these components are different from their values in the original BGE. Providing that some of the ionic components of the BGE are visible by the detector, the migrating SZs can be detected and they are present as system peaks/dips in the electropherogram. It is shown that a migrating SZ may be characterized by its mobility, and examples are given how this mobility can depend on the composition of the BGE. Further, the effects of the migrating SZs (either visible or not visible by the detector) upon the zones of analytes are presented and the typical disturbances of the peaks (extra broadening, zig-zag form, schizophrenic behavior) are exemplified and discussed. Finally, some conclusions are presented how to cope with the SZs in practice. The proposed procedure is based on the theoretical predictions and/or measurements of the mobilities of SZs and on the so-called unsafe region. Then, such operational conditions should be selected where the unsafe region is outside of the required analytical window.  相似文献   

14.
A capillary zone electrophoretic method has been developed and validated for the determination of the impurity quinocide (QC) in the antimalarial drug primaquine (PQ). Different buffer additives such as native cyclodextrins and crown ethers were evaluated. Promising results were obtained when either β‐cyclodextrin (β‐CD) or 18‐crown‐6 ether (18C6) were used. Their separation conditions such as type of buffer and its pH, buffer additive concentration, applied voltage capillary temperature and injection time were optimized. The use of 18C6 offers slight advantages over β‐CD such as faster elution times and improved resolution. Nevertheless, migration times of less than 5 min and resolution factors (Rs) in the range of 2–4 were obtained when both additives were used. The method was validated with respect to selectivity, linearity, limits of detection and quantitation, analytical precision (intra‐ and inter‐day variability) and repeatability. Concentrations of 2.12 and 2.71% (w/w) of QC were found in pharmaceutical preparations of PQ from two different manufacturers. A possible mechanism for the successful separation of the isomers is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Fused-silica capillaries are permanently coated by silanization with 3-{[3-(N-pyrrole)-2-hydroxypropyl]amino}propyltriethoxysilane followed by oxidative polymerization of the pyrrole moieties with iron (III) or peroxodisulfate in the presence of chloride, perchlorate, or dextransulfate as anions. This approach allows to modulate the EOF in its magnitude as well as in its direction. With the small anions chloride and perchlorate, the EOF is reversed below pH 5 while with the large dextransulfate polyanions (DS) the EOF is relatively constant over the pH range from 2.5 to 9.4. This can be of advantage at low pH, at which the EOF of uncoated capillaries is close to zero. Application for separation of some herbicides is shown. The lifetime of PP-modified capillaries is satisfactory: the decrease in EOF is less than 3% during 80 analyses (160 min) and less than 5% over three months of storage. The reproducibility of capillary modification is about 5% (RSD of EOF).  相似文献   

16.
An instrument is described which is capable of collecting fractions from a capillary zone electrophoresis apparatus. The fraction collector is characterized in terms of discretely collecting the separated components of a multi-component sample. In addition, the fraction collector permits the study of the effect of capillary zone electrophoresis on the biological activity of alpha-chymotrypsin.  相似文献   

17.
Poor sensitivity and low phase ratio are the main drawbacks of open tubular capillary electrochromatography (OTCEC). The poor sensitivity results from the use of narrow bore size capillary, whereas the low phase ratio, which limits the separation capability, is caused by the limited surface area of conventional capillary. Two strategies may be useful to overcome these disadvantages. First, an extended light path (ELP) capillary, which has a bubble cell at the detection point, is used to improve the sensitivity. Secondly, an etched capillary of a 1,000-fold increased surface area is used to enhance the phase ratio. In this work, use of an ELP capillary and an etched capillary in OTCEC was evaluated with a chiral stationary phase of avidin prepared with the physical adsorption method. With a 20 microm I.D. ELP capillary with a 150 microm bubble cell, the peak height was enhanced by 4-10-fold and the corrected peak area was increased by 12-fold relative to a 20 microm I.D. conventional capillary. However, the peak efficiency and resolution decreased noticeably. The phase ratio on the etched capillary was slightly enhanced, by a factor of 1.64 relative to an unetched capillary. Consequently, the separation capability was slightly improved. The increase in the phase ratio was much lower than that expected from the increase in surface area, the reason for which is probably the reduced density of surface silanol group and the generation of nitrogen-containing groups due to the etching process.  相似文献   

18.
Gebauer P  Beckers JL  Bocek P 《Electrophoresis》2002,23(12):1779-1785
In the last years, it has been shown that the formation and migration of system zones is an inherent feature of capillary zone electrophoresis (CZE) and that it depends predominantly on the composition of an actual background electrolyte (BGE). In most of the currently used BGEs, the SZs are invisible by the UV absorbance detection system, however, the comigration of SZs with the zones of analytes deteriorates the analytical performance of CZE and may be fatal for its utilization. Therefore, the theoretical predictions of the existence and migration of SZs is of key importance for the expediency of CZE. This is a review of the theoretical treatments of SZs which reveals the origin and the properties of SZs and shows how to cope with them. Also, a table of some typical BGEs is presented where the existence and mobilities of SZs are given.  相似文献   

19.
毛细管区带电泳法测定粉针剂中头孢拉定的含量   总被引:3,自引:0,他引:3  
用毛细管区带电泳法测定头孢拉定的含量 ,未涂层毛细管柱 (75 μm×48.5cm ,有效长度 40cm) ,电压 2 8kV ,检测波长 2 3 0nm ,温度 2 0℃ ,进样 5×1 0 3Pa× 3s。运行缓冲液为 2 5mmol/L硼砂缓冲液。方法的线性范围 3 1 .2 2μg/mL~ 749.2 8μg/mL ,检测限为 1 .1 7μg/mL。  相似文献   

20.
Separation conditions suitable to a rapid resolution of a group of eight nitrophenols by capillary zone electrophoresis (CZE) were found. Required differences in their effective mobilities were achieved via host-guest complexation of -cyclodextrin combined with intermolecular interactions involved by polyvinylpyrrolidone. When both additives were present in the carrier electrolyte at pH=9.1 nitrophenols could be separated in the column of a, 300 m I.D. and 180 mm in the length within 8–9 minutes. It is shown that the column of such an I.D. providing enhanced sample load capacity, can operate with high separation efficiencies as maintaining zone dispersions due to Joule heating on a tolerable level. CZE on-line coupled with isotachophoretic sample pretreatment is shown to provide the concentration limits of detection at low ppb concentrations by using an on-column photometric detector operating at 254 and 405 nm detection wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号