首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-exchange reactions are naturally occurring at soil and sediment/water interphases, determining soil fertility and water quality. These ion-exchange reactions with inorganic and organic exchangers are applied to chemical analysis, recovery of useful ions from low-grade ores (potentially from sea water), water purification including the preparation of "ultrapure" water, production of foods and medicines, therapy, and other uses. It is important to theorize about or to model ion-exchange reactions for quantitative explanations of ion-exchange phenomena and for efficient operation of ion-exchange processes. This paper describes the modeling of ion-exchange equilibria for hydroxyl sites on metal oxides and carboxyl sites in resins with monovalent cations (alkali metal ions), a monovalent anion (nitrate ion), and divalent heavy metal ions. The procedure of modeling is as follows: the stoichiometry and material balance equations of the respective ion-exchange reactions were established based on findings here and by others. The equilibrium conditions were given by the Frumkin equation, where the mass-action relation is modified with lateral interactions between species at the interphase. The model equations were fitted to the measured data and model parameter values were determined by nonlinear regression analysis. The formation of bonds between ions and exchanger sites was evaluated by the equilibrium constant and the suppression of bond formation by electrostatic, geometric, and other lateral interactions was evaluated by the interaction constant. It was established that the properties of ions are determined by the valence, size, and hydration state of the ions. Monovalent ions (anions and cations) react with oxide surface hydroxyl and resin carboxyl sites as hydrated ions and form loose ion-site pairs by a weak electrostatic bond (nonspecific adsorption). However, the lateral interactions are large because of a large polarization of the ion-site pairs. When the monovalent cations are dehydrated to react with carboxyl sites in narrow resin nanopores, the bond formation is difficult because energy for dehydration is necessary. The suppressive lateral interactions here are small because of a small polarization of the dehydrated ion-site pairs that are in direct contact. Divalent heavy metal ions react with oxide hydroxyl sites by replacing their hydrated water molecules and form ion-site pairs in direct strong contact (specific adsorption). The bond formation becomes easier with increasing charge density of the ions evaluated by the charge/radius ratio, agreeing with the order of these ions to form hydroxo complexes in solution. The suppressive lateral interaction is, however, small for ions with large charge densities, because a strong contact bond reduces the polarization of ion-site pairs by neutralization. The properties of exchangers are functions of the molecular and pore environments around the functional groups. The acid-base nature of oxide surface-hydroxyl groups is determined by the electronegativity of surrounding lattice metal ions, and that of resin carboxyl groups by the electron-repelling effect of adjacent methyl groups. Pores in oxides have diameters sufficient to accommodate hydrated ions, and the suppression is large because of repulsion from ions adsorbed on opposite pore walls (across-pore interaction). Pores in resins differentiate ions that can access or not access sites on the internal surfaces of the pores. Narrow nanopores with diameters less than those of the hydrated ions require ions to dehydrate before they can enter. The ion-exchange reactivity here is small, as described above for dehydrated monovalent ions. In wide nanopores where hydrated ions can enter, bond formation is easier, but suppression is greater because of a larger polarization of hydrated ion-site pairs and also of the across-pore interaction. Macropores have diameters much larger than those of the hydrated ions and the bond formation is the same as that in wide nanopores, but the suppression is smaller because of the absence oe of the absence of the across-pore interaction. Finally, this paper attempts a formulation of activity coefficients of exchanging sites and adsorbed ion-site pairs and compares the proposed activity coefficients of interphase species with that of solution species given by the Debye-Hückel equation.  相似文献   

2.
Isildak I  Asan A 《Talanta》1999,48(4):967-978
The overall efficiency of ion chromatographic procedures allows the possibility of routine separation and detection of common inorganic and organic anions and cations at low levels in a simultaneous system. A simple and rapid independent separation, and sensitive simultaneous detection of monovalent common anions and cations were achieved using 2 mM copper sulfate, (at pH: 5.40), as eluent with low cell-volume potentiometric detectors. This was established using all-solid state contact, tubular, PVC-matrix membrane anion and cation-selective electrodes in series as detectors with mixed-bed ion-exchange column in ion chromatography. The developed method is reproducible and highly selective to monovalent anions and cations, and takes less than 8 min. Under all operation conditions, the detection limits of the developed method, for potassium, rubidium, cesium, thallium(I), nitrite, nitrate, benzoate and bromide, were of the order of tens of ppb, for sodium, ammonium, chloroacetate, cyanate and chloride ions, values were of the order of hundreds of ppb for an injected volume of 20 mul. The method was flexible since most of anions do not interfere the detection of cations and most of cations do not affect the detection of anions, so that the method can be applied to many sample types e.g. environmental. The application of the method for river, sea and tap water samples were illustrated.  相似文献   

3.
The electrodialytic transport properties of new anion exchange membranes were evaluated that included the transport numbers of various anions, sulfate, bromide, fluoride, and nitrate ions, relative to chloride ions and current efficiency. The anion exchange membranes were prepared by the reaction of copolymer membranes crosslinked to different extents having chloromethyl groups with 4‐vinylpyridine to form a ladder‐like polymer in the membranes and then with trimethylamine to convert the remaining chloromethyl groups to benzyl trimethylammonium groups. The transport numbers of the sulfate and fluoride ions relative to the chloride ions were markedly less for the membranes that had been reacted with 4‐vinylpyridine and then with trimethylamine compared with those of the membranes that had been reacted only with trimethylamine. On the other hand, the selective permeation of nitrate and bromide ions through the membranes was enhanced by the reaction with 4‐vinylpyridine although the membranes became tighter by the reaction. The decrease in permeation of the sulfate ions was attributed to a synergistic effect involving the decrease in sulfate ions ion‐exchanged with the membranes and the decrease in mobility of the sulfate ions in the membranes with a low degree of crosslinking. Though the ion‐exchanged sulfate ion content was the lowest in the highly crosslinked membranes, the mobility ratio between the sulfate ions and chloride ions did not decrease in the membranes. However, the increase in the permeation of nitrate ions was based on the increase in the ion‐exchanged amount of nitrate ions with the membrane, and not the change in the mobility ratio between the nitrate and chloride ions. The formation of the ladder‐like polymer in the membrane matrix brought on a decrease in the hydrophilicity of the membranes due to pyridine groups and an increase in their tightness. The current efficiency of all membranes was greater than 99% during the electrodialysis of 0.50 N salt solutions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1773–1785, 1999  相似文献   

4.
Electrodialytic transport properties of anion exchange membranes were measured after formation of anionic polyelectrolyte layers on the membrane surfaces: relative transport number of various anions to chloride ions, current efficiency and apparent diffusion coefficients of neutral molecules. The anionic polyelectrolyte layers were formed by immersing the membrane into an aqueous solution of polycondensation product of sodium naphthalene sulfonate and formaldehyde or polystyrene sulfonic acid.

The change in the relative transport number between anions was remarkable in the anion exchange membrane with high ion exchange capacity by forming the layer. Results were: the relative transport number of sulfate ions to chloride ions decreased and those of nitrate ions to chloride ions, fluoride ions to chloride ions and bromide ions to chloride ions increased compared with the corresponding membrane. Although the apparent diffusion coefficient of neutral molecules suggested clogging of the membrane pores by the polyelectrolyte, anions with higher hydrated ionic diameter were able to permeate through the membrane easily. This means that difference of electrostatic repulsion force against two anions is effective on the change in the relative transport number of anions.  相似文献   


5.
Ion-exchange precipitation was used in geochemical analysis where the various trace elements can be determined by prior separation over an ion-exchange column. By application of the principles of classical wet analysis the presence of trace elements was verified and their quantitative determination performed in rock samples by converting an anion exchanger into the respective ionic forms to obtain the insoluble salts through the action of counterion (an anion) of the resin and the metal ion in the solution. The metal ions are then eluted by suitable eluting reagents that form soluble salts. The columns of 5 g Amberlite IR-400 were used and were converted into the desired anionic forms. The different forms used were sulfide, hydroxyl, carbonate, chromate, and sulfate. Flow rate was maintained at 1 ml/min. Different rock samples were examined for Mn, Zn, Ba, Ni, Cu, and Sr, etc. The results have been compared with the standard results.  相似文献   

6.
Non-suppressed anion chromatography, using on-line recycled eluents, was investigated. Cations and anions from samples were excluded from the eluents using a mixture of strongly acidic cation-exchange resins and strongly basic anion exchange resins in the eluent reservoir. This exclusion was performed after determination of the anions in the non-suppressed anion chromatography, and the eluents were then recycled on-line. The performance of consecutive determinations was evaluated from the relative standard deviation (RSD) of peak heights and retention times of chloride, bromide, nitrite, nitrate, and sulfate ions, with a concentration of 3 microg ml(-1) each, compared to that of normal anion chromatography. Over 50 consecutive determinations could be achieved with an eluent volume of only 200 ml for a 100 microl sample volume. Almost all the RSD values for retention time, and peak heights of these anions, were smaller than 3%. Over fifty consecutive determinations of chloride, nitrate, and sulfate ions in a river water sample could be achieved with an eluent volume of only 100 ml. All the RSD values for retention time and peak heights of these anions were smaller than 3%. The eluent volume could be decreased to one tenth of that used in normal anion chromatography. The performance of the anion chromatography, using on-line recycled eluents, was the same as that for normal anion chromatography under the same conditions.  相似文献   

7.
When 1-anilino-8-naphthalenesulfonate (ANS) interacts with phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) its fluorescence is enhanced and a blue shift occurs. There is evidence that ANS binds to the site of the nucleotide substrate. The work described herein shows that when various anion inhibitors are added to the ANS-enzyme solution, de-enhancement of the fluorescence occurs. Extrapolation to infinite anion concentration shows that pyruvate ions are the most effective quenchers (ca. 90%) and nitrate ions the least effective, sulfate and phosphate ions being intermediate. The results are consistent with earlier enzymes kinetic findings suggesting that pyruvate ions and ANS, both competing with the nucleotide substrate, are able to bind to the enzyme simultaneously and that sulfate, phosphate and nitrate ions can, to various extents, affect the properties at the active centre of phosphoglycerate kinase via conformational changes without sharing ligands with the nucleotide substrate.  相似文献   

8.
This paper considers a new and highly effective process for selective elimination of nitrates from drinking water through electrodialysis. It is based on coupled use of a modified anion exchange membrane with a nitrate-selective anion exchange resin. The latter is placed in the desalination compartment and constitutes a part of a new type of ion-conducting intermembrane spacer. A highly preferential transport of nitrate anions against chlorides and sulphates is observed to take place at low current densities. The results obtained prove that electrodialysis is a practical solution to the problem of selective elimination of nitrates from drinking water.  相似文献   

9.
This research examines and quantifies the influence of ion solvation parameters on the affinity of monovalent anions for strong-base anion resins. A data set comprising resin selectivity coefficients and solvation parameters from the literature is statistically analyzed using correlation and multiple regression techniques. The affinity of monovalent anions for the resin phase correlated well to ionic radii. Solvation parameters such as the hydration number, and entropy, enthalpy and free energy of hydration are also strongly correlated to selectivity. Using the stepwise regression procedure on subsets of independent variables, the entropy of hydration, which characterizes the structure-influencing nature of ions in solution, is incorporated as the sole parameter in the predictive model for resin selectivity. The data are best correlated by the exponential form of the regression equation, and the physical meaning of the correlation is shown to be reasonable. A simple rule for categorizing ions as structure-makers and structure-breakers is proposed, and the results are consistent with conventional classifications.  相似文献   

10.
Anion exchange membranes with pyridinum groups and various pyridinium derivative groups were prepared from a copolymer membrane composed of chloromethylstyrene and divinylbenzene, and pyridine and pyridine derivatives. The anion exchange membranes obtained showed excellent electrochemical properties in electrodialysis. The transport numbers of sulfate ions, bromide ions, nitrate ions, and fluoride ions relative to chloride ions were evaluated in connection with the species of a substituent and the position of the substituent in the pyridinium groups. In general, when a hydrophilic substituent (methanol groups) existed at the 2-position of the pyridinium groups, nitrate ions and bromide ions, which are less hydrated, permeated through the membranes with difficulty, and sulfate ions permeated selectively through the membranes. On the other hand, when hydrophobic groups, for example, ethyl groups, existed at the 2-position of the pyridinium groups, bromide ions and nitrate ionspermeated selectively through the membranes and fluoride ions had difficulty permeating through the membranes. The carbon number of the alkyl chain of 4-alkyl pyridinium groups also affected permeation of nitrate ions and bromide ions due to the change in hydrophilicity of the membranes. Though the hydration of the anions and the species of the substituent at the 2-position of the pyridinium groups were related to selective permeation of the anion through the membranes, permeation of sulfate ions was not as sensitive to the hydrophilicity of the membranes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 49–58, 1998  相似文献   

11.
A chelating agent-loaded resin consisting of 8-quinolinol-5-sulfonic acid and an anion-exchange resin (HOx-resin) was prepared in order to concentrate trace chalcophile elements in natural water samples selectively before neutron activation analysis. The exchange capacity of the Diaion SA No. 100 for the reagent (1.8 meq . g-1 resin) corresponds approximately to that for chloride ion (1.83 meq . g-1 resin), indicating that 8-quinolinol-5-sulfonic acid is adsorbed quantitatively on the exchange site of the resin through the sulfonate anion in the reagent. The basic conditions for the adsorption of the metal ions on the resin were investigated by employing the column method. The nitrate concentration and the pH of the sample solution affect the adsorption behavior of metal ions. Several solutions containing metal ions with varying pH or varying nitrate concentration were applied to the resin column (35 mm x 7 mm phi) with a flow rate of 2.0 cm3 . min-1. As a result, the optimum conditions for the quantitative adsorption of copper(II), zinc(II), cadmium(II), cobalt(II), nickel(II) and manganese(II) were as follows: NO3- less than 0.01 mol . dm-3 pH greater than 4.6. Furthermore, the feasibility of the above conditions as well as quantitative adsorption of the chalcophile elements was confirmed through the neutron activation analysis of the synthesized metal solutions.  相似文献   

12.
An ion chromatographic method for the determination of nitrite, nitrate and ammonium simultaneously is described. An appropriate eluent-column-detector combination for separating and detecting these ions is discussed. On a bifunctional ion-exchange column, nitrite and nitrate anions were separated by anion exchange and ammonium cation by cation exchange. Nitrite and nitrate were detected by UV spectrometry and ammonium using a chemically suppressed conductivity detector. The detection limits for the three ions were all below 0.02 ppm (w/w) and the relative standard deviations for the three ions were all less than 0.5%. Several samples such as water, soil and acid rain were analysed with this method and the recoveries of the three ions were all within 100 ± 5%. These results agreed well with those obtained by a standard method.  相似文献   

13.
The local structures of Cl- and Br- in anion-exchange resins have been studied by X-ray absorption fine structure (XAFS), and separation selectivity is discussed on the basis of results. When two different anion-exchange resins having trimethylammonium and dimethylammonium groups as anion-exchange groups are employed for ion-exchange experiments, slightly higher Br- selectivity has been obtained with the former. XAFS has indicated that the average hydration numbers for a given anion is not affected by the structure of the ion-exchange group, but that the extent of ion-association between the anion and the ion-exchange groups depends on the type of the ion-exchange group. Shorter interaction distance (and in turn stronger ion-association) has been confirmed for the dimethylammonium-type resin, and is consistent with lower Br- selectivity of this resin.  相似文献   

14.
The characteristics of Tiron (1,2-dihydroxybenzene-3,5-disulfonic acid and its sodium salt) solution as an eluent for anions in ion-exchange chromatography was investigated with conductivity and UV absorbance detectors. Tiron (acid and sodium salt) has such a strong affinity for the anion exchanger that the concentration in the eluent can be made lower than that of benzene carboxylates, such as phthalate, which have been used similarly. Tiron acid exhibited an unusual effect which increased the sensitivity with a conductivity detector. The water dip was not observed, and a big ghost peak appeared near the sulfate peak. Tiron salt did not produce a ghost peak, and was better for highly sensitive detection in indirect photometric chromatography than phthalate, because of a better balance between UV absorptivity and elution ability. Because Tiron forms stable chelates with many metal ions, pretreatment with a cation-exchange resin is necessary for real samples such as tap water.  相似文献   

15.
Fundamental kinetic aspects of the decomposition of mixtures and double salts of ammonium nitrate and ammonium sulfate were studied. The effect of water and sulfuric acid additives on the thermal decomposition rate of ammonium nitrate and sulfate mixtures was examined. The constant of proton exchange between nitric acid and the sulfate anion in molten ammonium nitrate was estimated.  相似文献   

16.
The natural background of anions encountered when analyzing soil samples by ion chromatography (IC) present significant problems in the separation, detection and quantification of isopropyl methylphosphonic acid (IMPA) and methylphosphonic acid (MPA), the degradation products of sarin, a chemical warfare nerve agent. Using chemically-suppressed IC with conductivity detection, a commercially available ion-exchange column, and an isocratic binary eluent system, IMPA and MPA were determined in aqueous extracts of soil at sub-ppm (μg/g) concentrations without the need for gradient elution or organic solvent eluent modifiers. Common soil anions such as chloride, nitrate, sulfate and phosphate do not interfere with the analysis method due to the composition of the binary eluent allowing for greater mobilization of multivalent anions (e.g., MPA, carbonate, and sulfate) while monovalent anions (e.g., IMPA and nitrate) are relatively unaffected. Carbonate is selectively removed by in-line respeciation to bicarbonate.  相似文献   

17.
Ion-exclusion chromatography (ICE) followed by ion chromatography (IC) was used for the determination of trace anionic contaminants in concentrated weak acids. The ICE separation was used as a pretreatment step to isolate the contaminant anions of strong acids from the excess of matrix ions. Then a fraction containing the analyte ions was separated using IC with suppressed conductivity detection. Microbore–ion-exchange columns were chosen to address the increased purity requirements for use of these concentrated acids in semiconductor applications. The chromatographic conditions were optimized for determining trace chloride, sulfate, phosphate, and nitrate in concentrated 24.5% (v/v) hydrofluoric acid; trace chloride, sulfate, and nitrate in concentrated 85% (w/w) phosphoric acid and trace chloride and sulfate in concentrated 0.7% (v/v) glycolic acid. Method detection limits for the anions of interest were below 100 μg/l.  相似文献   

18.
Nano-sized toroidal copper(II)-hydroxide/pyrazolate assemblies, lined by H-bond donors on the inside and hydrophobic on the outside, selectively extract sulfate from mixtures with nitrate or perchlorate. Tetrabutylammonium "lids" seal the "nano-jars" and render the encapsulated sulfate anion completely buried and inaccessible, so that it is not precipitated by Ba(2+) ions.  相似文献   

19.
Methods for separation of ions by ion-exchange, ion-pair, and zwitterion ion chromatography share at least one common thread--the induced formation of a cation-anion pair in the stationary phase. Selectivity can be defined as the relative ability of sample ions to form such a pair. Examples are given in anion-exchange chromatography to show the effect of variations in the geometry, bulkiness and polarity of the resin cation on selectivity. The type of resin matrix, the hydrophobic nature of the resin surface and the degree of solvation also affect chromatographic behavior. The selectivity series observed in ion chromatography seems to be best explained by the interplay of two components: electrostatic attraction (ES) and the enforced-pairing (EP) that is brought about by hydrophobic attraction and by water-enforced ion pairing. Selectivity in ion-pair chromatography (IPC) and in zwitterion ion chromatography (ZIC) is affected by both the mobile phase cation and anion. This leads to elution orders for anions that are different from conventional ion-exchange chromatography (IC) of anions where cations are excluded from the stationary phase and have little effect on a separation. The elution order of anions in ZIC is similar to that in IC except for small anions of 2-charge, which are retained more weakly in ZIC. A unique advantage of ZIC is that sample ions can be eluted as ion pairs with pure water as the eluent and a conductivity detector. The mechanism for separation of anions on a zwitterionic stationary phase has been a subject for considerable debate. The available facts point strongly to a partitioning mechanism or a mixed mechanism in which partitioning is dominant with a weaker ion-exchange component.  相似文献   

20.
Phenomenon of rising sorption capacity of AV-17-8 anion exchanger upon an increase in its humidity due to the superequivalent absorption of Cl ions was revealed and substantiated. The purification of halogensubstituted hydrocarbon solvents to remove acids under dynamic conditions by the ion-exchange method and the dynamics of sorption by anion exchangers of halogen-substituted solvents from model solutions were studied. It was shown that AV-17-8 anion exchanger is stable in halogen-substituted solvents and, when present in the OH–form, raises their stability against destruction, and the equilibrium sorption capacity of the anion exchanger is 2–3 times its exchange capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号