首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
0引言直接甲醇燃料电池(DMFC)由于其燃料来源丰富、价格低廉、甲醇携带和储存安全方便等独特的优越性而越来越受到重视[1]。但DMFC中常用的阳极Pt催化剂对甲醇氧化的低的电催化活性及易于被甲醇氧化的中间体,吸附态的CO(COad)毒化的问题一直是制约DMFC走向实用化的关键问题[2,3]。由于甲醇分子小,在质子交换膜上有较大的透过作用,并且甲醇具有较高的毒性,所以寻求甲醇的替代燃料也是一直以来被广泛关注的问题[4,5]。乙醇是最简单的链醇分子,相对于甲醇来说,乙醇有很多优点,乙醇基本上没有毒性,来源丰富,价格可与甲醇竞争,能量密度高…  相似文献   

2.
直接甲醇燃料电池(DMFC)直接以甲醇为阳极燃料,具有系统结构简单、体积能量密度高、燃料补充方便等特点,非常适合用于小型移动电源。甲醇浓度对DMFC性能和燃料利用效率的影响非常大,甲醇浓度高低直接决定DMFC输出性能的好坏,控制好DMFC中的甲醇浓度,对其寿命长短起着至关重要的作用。本文将目前已有的甲醇浓度控制方法分为有甲醇浓度传感器和无甲醇浓度传感器两大类,评述了这些浓度控制方法的研究现状和优缺点,并展望了甲醇浓度控制方法的趋势。  相似文献   

3.
直接甲醇燃料电池阴极电催化剂的研究进展   总被引:8,自引:0,他引:8  
直接甲醇燃料电池(DMFC)功率密度高,燃料甲醇价格低廉、储存和携带方便,特别适合作为电动车和小型电子设备的电源,是目前燃料电池研究领域的一个热点。本文介绍了40年来DMFC阴极电催化剂的发展历史及现状,并针对目前严重影响DMFC性能的“甲醇透过”问题,阐述了研制耐甲醇阴极电催化剂的重要性,讨论了今后DMFC阴极电催化剂的发展趋势。  相似文献   

4.
直接甲醇燃料电池(DMFC)是将燃料(甲醇)和氧化剂(氧气或空气)的化学能直接转化为电能的装置,它体积小、环境污染小、性能可靠,具有广阔的应用前景.甲醇分子反应活性较低,具有较高的极化电位,因此阳极催化剂是DMFC研究的重要内容.目前阳极催化剂往往采用大量的贵金属(如铂),这不可避免地增加了DMFC的成本,限制了DMFC的应用范围~([1]).  相似文献   

5.
尹蕊  刘双全  邬冰  高颖 《无机化学学报》2006,22(11):2118-2122
由于乙醇最有可能成为直接甲醇燃料电池(DMFC)的替代燃料,因此近年来。对乙醇的电化学氧化及直接乙醇燃料电池的研究已引起人们的很大兴趣。甲醇毒性较大并且易透过Nafion膜进入阴极造成阴极的混合电位而影响DMFC的阴极性能.这是制约DMFC走向实用化的主要问题之一。因此人们在致力于研究直接甲醇燃料电池的同时.也寻求其它的小分子醇作为甲醇的替代燃料。乙醇是除甲醇以外最简单的醇.它来源广泛.无毒,是可再生和环保型能源.并且也有较高的能量密度和反应活性。但是乙醇在电极上的完全氧化因涉及到C-C键的断裂要比甲醇困难.阳极反应动力学过程也比较缓慢。到目前为止铂基催化剂仍然是乙醇氧化最好的催化剂.虽然也有使用非铂催化剂研究乙醇的电氧化,但催化活性远不如铂基催化剂高。  相似文献   

6.
直接甲醇燃料电池中质子交换膜的研究进展   总被引:2,自引:0,他引:2  
质子交换膜是直接甲醇燃料电池(DMFC)的关键部件之一. 本文系统地介绍了近三年来DMFC中质子交换膜研究的最新进展.  相似文献   

7.
林玲  朱青  徐安武 《化学进展》2015,27(9):1147-1157
直接甲醇燃料电池(DMFC)由于其结构简单、能量密度高、易携带、无污染等优点,成为燃料电池未来发展的方向。阳极和阴极催化剂的活性和稳定性是决定DMFC性能、寿命和成本的关键。然而,商业催化剂铂(Pt)的低储量和高成本限制了DMFC的广泛应用,同时,非铂类催化剂的活性和稳定性还需要进一步提高,以达到商业化应用的要求。本文综述了近年来国内外DMFC阳极和阴极催化剂的最新研究进展。首先,对于阳极甲醇氧化催化剂,分别对Pt基催化剂的改性和非Pt类催化剂的研究进展进行了详细介绍;其次,概述了Pt基阴极氧还原催化剂的改性和非Pt阴极催化剂的发展现状;此外,对于催化剂与载体的强相互作用产生的协同效应进行了总结论述;最后,对直接甲醇燃料电池阳极和阴极催化剂的发展前景进行了展望。  相似文献   

8.
张军  许莉  王宇新 《化学通报》2002,65(2):W010
90年代中期以来,聚合物直接甲醇膜燃料电池(DMFC)研究取得了重要进展,其商业前景日趋明朗,正受到越来越多的关注.本文综述了DMFC膜电极制备工艺和电极结构优化的研究进展,分析了DMFC膜电极存在的问题.  相似文献   

9.
邓光荣  梁亮  李晨阳  刘长鹏  葛君杰  邢巍 《应用化学》2019,36(10):1211-1220
甲醇溶液浓度对于直接甲醇燃料电池(DMFC)的性能具有重要影响。 本文旨在建立一种能在电源系统中有效控制甲醇浓度的策略。 通过构建电池内甲醇物料守恒和热守恒方程,确定了基于电量和温度这两个参数的甲醇浓度控制策略。 通过测试温度-浓度关系验证了控制策略的可行性。 结果表明,采用该策略,DMFC电源系统稳定运行超过420 min;合适的甲醇浓度范围为0.70~0.87 mol/L。 该策略完成了甲醇浓度控制的目标,并将在电源系统中发挥重要作用。  相似文献   

10.
直接甲醇燃料电池质子膜研究进展   总被引:3,自引:0,他引:3  
本文对直接甲醇燃料电池(DMFC)质子交换膜的要求及目前的研究状况作了简要的概述,特别是从基膜材料结构角度进行分类,较详细地介绍分析以Nafion膜为代表的全氟磺酸膜的各种改性研究及以PBI、PEEK、PSU等基膜材料为代表的聚芳环系列的DMFC质子交换膜的研究情况.总结了质子交换膜的一些研究方法,对直接甲醇燃料电池质子交换膜的发展前景进行了探讨。  相似文献   

11.
Preparation of Pt/C Catalyst with Solid Phase Reaction Method   总被引:10,自引:0,他引:10  
The Pt/C catalyst was prepared with solid phase reaction method (Pt/C(S)) for the first time.Its Performances were compared with that prepared by the traditional liquid phase reaction method. The results demonstrate that the electrocatalytic activity of Pt/C catalyst with solid phase reaction method for methanol oxidation is higher than that with liquid phase reaction method. XRD and TEM measurements indicate that the Pt/C(S) possesses low crystalline extent and small particle size.  相似文献   

12.
直接甲醇燃料电池存有两个较为突出的技术问题,即:阳极催化剂活性低和甲醇渗透[1~4]。针对“甲醇渗透”(cross-over)问题有两种解决途径:一、使用低甲醇渗透率电解质膜(阻醇膜),二、使用抗甲醇氧还原电催化剂[4]。目前,多数改性或新型膜材料的阻醇率有一定提高,然而膜的电导率等指标不够理想[5~7]。抗甲醇氧还原催化材料的开发研究正逐渐受到重视[4]。因过渡金属纳米簇硫族化合物电催化剂的活性、抗甲醇性、稳定性高、成本低逐渐得到青睐,是有竞争力的Pt替代催化材料[7~15]。过渡金属纳米簇硫族化合物MqM′yXz的金属核M′多为Ru,掺杂…  相似文献   

13.
李英杰  王鑫  周昱成 《无机化学学报》2023,39(10):1905-1913
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

14.
A nanoporous Pt particles‐modified Ti (nanoPt/Ti) electrode was prepared through a simple hydrothermal method using aqueous H2PtCl6 as a precursor and formaldehyde as a reduction agent. The nanoPt/Ti electrode was then modified with limited amounts of tin particles generated by cyclic potential scans in the range of ?0.20 to 0.50 V in a 0.01 mol·L?1 SnCl2 solution, to synthesize a Sn‐modified nanoporous Pt catalyst (Sn/nanoPt/Ti). Electroactivity of the nanoPt/Ti and Sn/nanoPt/Ti electrodes towards formaldehyde oxidation in a 0.5 mol·L?1 H2SO4 solution was evaluated by cyclic voltammetry and chronoamperometry. Electrooxidation of formaldehyde on the nanoPt/Ti electrode takes place at a potential of 0.45 V and then presents high anodic current densities due to the large real surface area of the nanoPt/Ti electrode. The formaldehyde oxidation rate is dramatically increased on the Sn/nanoPt/Ti electrode at the most negative potentials, where anodic formaldehyde oxidation is completely suppressed on the nanoPt/Ti electrode. Chronoamperogramms (CA) of the Sn/nanoPt/Ti electrode display stable and large quasi‐steady state current densities at more negative potential steps. Amperometric data obtained at a potential step of 100 mV show a linear dependence of the current density for formaldehyde oxidation upon formaldehyde concentration in the range of 0.003 to 0.1 mol·L?1 with a sensitivity of 59.29 mA·cm?2 (mol·L?1)?1. A detection limit of 0.506 mmol·L?1 formaldehyde was found. The superior electroactivity of the Sn/nanoPt/Ti electrode for formaldehyde oxidation can be illustrated by a so‐called bifunctional mechanism which is involved in the oxidation of poisoning adsorbed CO species via the surface reaction with OH adsorbed on neighboring Sn sites.  相似文献   

15.
反胶束法制备直接甲醇燃料电池Pt-Sn/C催化剂及其表征   总被引:3,自引:0,他引:3  
在水/AOT/环己烷反胶束体系中, 制备了Pt-Sn/C催化剂, 研究了不同ω (反胶束溶液中水与表面活性剂的物质量之比)值对Pt-Sn粒径的影响. 并采用TEM, XRD, XPS, 循环伏安等技术对其进行表征. TEM结果表明合成的Pt-Sn纳米颗粒为球形, 在碳载体表面均匀分布, 粒径分布窄, 平均粒径为2.7 nm. Pt-Sn颗粒尺寸随着ω的增加而增大. XRD结果表明该催化剂中Pt具有面心立方结构且没有与Sn形成合金. XPS结果表明在该催化剂中, Pt主要以零价态存在. 在甲醇溶液中的循环伏安扫描结果表明, 甲醇氧化峰电位和峰电流随着ω的增加而减小, 说明反胶束方法可以通过控制颗粒尺寸, 从而影响催化剂的电氧化活性. 相对于商用Pt-Ru/Vulcan XC-72 (20 wt%, E-TEK公司), 该催化剂具有较低的峰电势以及较高的If/Ib (循环伏安曲线中正向扫描峰电流与反向扫描峰电流的比值), 这表明用此方法制备的Pt-Sn/C催化剂具有较好的抗中毒能力.  相似文献   

16.
三组Pt- Ru/C催化剂前驱体对其性能的影响   总被引:1,自引:0,他引:1  
分别以三组不同的Pt和Ru化合物为前驱体, 采用热还原法制备了Pt-Ru/C催化剂, 比较不同前驱体对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析. 结果表明以H2PtCl6+RuCl3和自制(NH4)2PtCl6+Ru(OH)3为前驱体的催化剂Pt和Ru没有完全形成合金状态, 在Pt(111)和Pt(200)之间有Ru(101)存在;以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂未检测出Ru金属或其氧化物的衍射峰, Pt-Ru颗粒在载体上分散均匀, 粒径最小, 为3.7 nm. 利用玻碳电极测试了循环伏安、记时电流和阶跃电位曲线, 考核了上述催化剂对甲醇阳极催化氧化活性的影响;结果表明:以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂对甲醇的电催化氧化活性最高, 循环伏安曲线峰电流密度达11.5 mA•cm-2.  相似文献   

17.
直接甲醇燃料电池(DMFC)是理想的移动电源,但因金属Pt阴极催化剂的选择性较差,甲醇在阴极产生“混合电位”,导致电池效率降低。抗甲醇氧电还原催化剂可降低“混合电位”,是解决该问题的有效的方法。  相似文献   

18.
锂硫电池中较差的循环稳定性和倍率性能是实现锂硫电池商业化的技术障碍,其主要原因之一是多硫化物在硫电极内的电化学转化动力学较为缓慢。为此,我们以ZIF-9为前驱体,采用先碳化,再酸化刻蚀,最后硒化的方法合成了含少量催化剂的CoSe修饰氮掺杂多孔碳(CoSe/NC)电极材料,以期提高硫电极内多硫化物的电化学转化动力学性能,并通过流动液相三电极体系对该材料进行电化学动力学表征。结果显示,相较于对比材料,CoSe/NC能够加快多硫化物的氧化还原反应速率,在 0.2mA·cm-2电流密度下,多硫化物氧化还原反应在CoSe/NC电极上有最小的反应过电位;同时,在0.1 V过电位下,各氧化还原反应也有最大的响应电流。因此,将 CoSe/NC作为硫宿主材料组装电池展现了优异的电化学性能:在 1C(1C=1 675 mA·g-1)下初始放电比容量为1 068 mAh·g-1,经过500次循环后,可逆容量仍保持在693 mAh·g-1。另外,在3C的高电流密度下,放电比容量可高达819 mAh·g-1。  相似文献   

19.
以Mn(Ac)_2和Co(Ac)_2作为前驱体,导电碳Ketjenblack (KB)作为负载碳源,采用水解-水热法制备氮掺杂的MnCo_2O_4/N-KB催化剂材料,对其结构特征和碱性溶液中氧还原反应的催化性能进行表征,并进一步分析其氧还原反应活性。结果表明:MnCo_2O_4/N-KB催化剂的形态是KB骨架上生长纳米级MnCo_2O_4,并且在N-KB和MnCo_2O_4之间形成化学耦合,产生协同作用,有效提高了MnCo_2O_4/N-KB催化剂的氧还原活性。MnCo_2O_4与N-KB的质量比为1∶9时,MnCo_2O_4/N-KB催化剂在O_2饱和0.1mol·L~(-1)KOH溶液中对氧还原反应的电催化性能最佳,反应的极限电流密度为5.7 mA·cm~(-2),半波电位接近0.81 V,电子转移数为4。在相同负载量下,MnCo_2O_4/N-KB催化剂相比商用Pt/C(电流密度5.2 mA·cm~(-2),半波电位0.83 V)有着更高的极限电流密度和耐久性。  相似文献   

20.
A series of catalysts (g-C3N4@MWCNTs/Mn3O4) were prepared from g-C3N4, MWCNTs, and Mn3O4 for oxygen reduction reaction (ORR) in zinc–air batteries. From the half-cell tests, the loading of 35 % Mn3O4 (sample GMM35) presents an excellent activity toward ORR in alkaline condition. Rotating ring-disk electrode (RRDE) studies reveal that 3.6~3.8 electrons are transferred with a H2O2 yield of 11.4 % at ?0.4 V. Meanwhile, the GMM35 nanocomposite exhibits the same durability as commercial 20 wt% Pt/C in alkaline condition, but it shows lower peak power density (192.4 mW cm?2 at 229.1 mA cm?2) and cell voltage than those with a commercial Pt/C catalyst (260.9 mW cm?2 at 285.4 mA cm?2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号