首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A standard quadratic optimization problem (StQP) consists of finding the largest or smallest value of a (possibly indefinite) quadratic form over the standard simplex which is the intersection of a hyperplane with the positive orthant. This NP-hard problem has several immediate real-world applications like the Maximum-Clique Problem, and it also occurs in a natural way as a subproblem in quadratic programming with linear constraints. To get rid of the (sign) constraints, we propose a quartic reformulation of StQPs, which is a special case (degree four) of a homogeneous program over the unit sphere. It turns out that while KKT points are not exactly corresponding to each other, there is a one-to-one correspondence between feasible points of the StQP satisfying second-order necessary optimality conditions, to the counterparts in the quartic homogeneous formulation. We supplement this study by showing how exact penalty approaches can be used for finding local solutions satisfying second-order necessary optimality conditions to the quartic problem: we show that the level sets of the penalty function are bounded for a finite value of the penalty parameter which can be fixed in advance, thus establishing exact equivalence of the constrained quartic problem with the unconstrained penalized version.  相似文献   

2.
Portfolio optimization is a procedure for generating a portfolio composition which yields the highest return for a given level of risk or a minimum risk for given level of return. The problem can be formulated as a quadratic programming problem. We shall present a new and efficient optimization procedure taking advantage of the special structure of the portfolio selection problem. An example of its application to the traditional mean-variance method will be shown. Formulation of the procedure shows that the solution of the problem is vector intensive and fits well with the advanced architecture of recent computers, namely the vector processor.  相似文献   

3.
A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FF T where F is some non-negative matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a non-negative quadratic form on the positive orthant). This conic formulation allows us to employ primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evolutionary dynamics algorithm which generates primal-feasible paths along which the objective is monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling directions are used to escape from local maxima encountered during the evolutionary dynamics phase.  相似文献   

4.
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the best of our knowledge.  相似文献   

5.
标准的二次优化问题是NP-hard问题,把该问题转化为半不定的线性规划问题,且提出了一个线性规划的割平面算法来求解这个半不定的线性规划问题,并给出了该算法的收敛性证明.  相似文献   

6.
In this article, we obtain new sufficient optimality conditions for the nonconvex quadratic optimization problems with binary constraints by exploring local optimality conditions. The relation between the optimal solution of the problem and that of its continuous relaxation is further extended.  相似文献   

7.
Quadratic fractional functions are proved to be quasilinear if and only if they are pseudo-linear. For these classes of functions, some characterizations are provided by means of the inertia of the quadratic form and the behavior of the gradient of the function itself. The study is then developed showing that generalized linear quadratic fractional functions share a particular structure. Therefore it is possible to suggest a sort of canonical form for those functions. A wider class of functions given by the sum of a quadratic fractional function and a linear one is also studied. In this case generalized linearity is characterized by means of simple conditions. Finally, it is deepened on the role played by generalized linear quadratic fractional functions in optimization problems.  相似文献   

8.
A nonsmooth multiobjective continuous-time problem is introduced. We establish the necessary and sufficient optimality conditions under generalized convexity assumptions on the functions involved. This research was supported by Center of Excellence for Mathematics, University of Isfahan, Isfahan, Iran.  相似文献   

9.
一类规划问题所给最优性必要条件的注记   总被引:5,自引:0,他引:5  
本文指出了一类规划问题所给最优性必要条件中所存在的问题。对于一些带有附加项,(如(x^TDx)^1/2‖Sx‖p)的单目标规划问题一般都给出了一个类似集合Z^0 ,并以“Z^0为空集”作为一个前提条件。本文指出此条件太强,并论证了当只有Z^0为空集时,就可推出强最优性必要条件,而不必要求“x^0是最优解”。  相似文献   

10.
A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. Among the problems which can be transformed into a StQP are the general quadratic problem over a polytope, and the maximum clique problem in a graph. In this paper we present several new polynomial-time bounds for StQP ranging from very simple and cheap ones to more complex and tight constructions. The main tools employed in the conception and analysis of most bounds are Semidefinite Programming and decomposition of the objective function into a sum of two quadratic functions, each of which is easy to minimize. We provide a complete diagram of the dominance, incomparability, or equivalence relations among the bounds proposed in this and in previous works. In particular, we show that one of our new bounds dominates all the others. Furthermore, a specialization of such bound dominates Schrijver’s improvement of Lovász’s θ function bound for the maximum size of a clique in a graph.   相似文献   

11.
We give a linear time algorithm for the continuous quadratic knapsack problem which is simpler than existing methods and competitive in practice. Encouraging computational results are presented for large-scale problems. The author thanks the Associate Editor and an anonymous referee for their helpful comments.  相似文献   

12.
本文证明了带球(椭球)约束的不定二次规划问题具有强Lagrange对偶性,设计了一个求解这类问题的算法,本语文的结论比文「7」强,所设计的算法比文「7」简洁。  相似文献   

13.
The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities (LMI's). In particular, we show that our approach leads to a polynomial-time approximation scheme for the standard quadratic optimzation problem. This is an improvement on the previous complexity result by Nesterov who showed that a 2/3-approximation is always possible. Numerical examples from various applications are provided to illustrate our approach.  相似文献   

14.
We present a family of local-search-based heuristics for Quadratic Unconstrained Binary Optimization (QUBO), all of which start with a (possibly fractional) initial point, sequentially improving its quality by rounding or switching the value of one variable, until arriving to a local optimum. The effects of various parameters on the efficiency of these methods are analyzed through computational experiments carried out on thousands of randomly generated problems having 20 to 2500 variables. Tested on numerous benchmark problems, the performance of the most competitive variant (ACSIOM) was shown to compare favorably with that of other published procedures. G. Tavares supported in part by the Portuguese FCT and by the FSE in the context of the III Quadro Comunitário de Apoio. P. L. Hammer, Our co-author and friend, Dr. Peter L. Hammer died in a tragic car accident while the final version of this paper was being prepared.  相似文献   

15.
Four NP-hard optimization problems on graphs are studied: The vertex separator problem, the edge separator problem, the maximum clique problem, and the maximum independent set problem. We show that the vertex separator problem is equivalent to a continuous bilinear quadratic program. This continuous formulation is compared to known continuous quadratic programming formulations for the edge separator problem, the maximum clique problem, and the maximum independent set problem. All of these formulations, when expressed as maximization problems, are shown to follow from the convexity properties of the objective function along the edges of the feasible set. An algorithm is given which exploits the continuous formulation of the vertex separator problem to quickly compute approximate separators. Computational results are given.  相似文献   

16.
This is a summary of the author’s PhD thesis supervised by A. Billionnet and S. Elloumi and defended on November 2006 at the CNAM, Paris (Conservatoire National des Arts et Métiers). The thesis is written in French and is available from http://www.cedric.cnam.fr/PUBLIS/RC1115. This work deals with exact solution methods based on reformulations for quadratic 0–1 programs under linear constraints. These problems are generally not convex; more precisely, the associated continuous relaxation is not a convex problem. We developed approaches with the aim of making the initial problem convex and of obtaining a good lower bound by continuous relaxation. The main contribution is a general method (called QCR) that we implemented and applied to classical combinatorial optimization problems.   相似文献   

17.
In this paper, we study optimality conditions for vector optimization problems of a difference of convex mappings
where is a closed convex cone in a Banach space Z, l is a mapping Q-convex from a Banach space X into Z, A is a continuous linear operator from X into a Banach space and are respectively the nonnegative orthants of and , C is a nonempty closed convex subset of X, bW, and the functions fi,gi,hj and kj are convex for i=1,...,p and j=1,ldots,m. Necessary optimality conditions for (VP) are established in terms of Lagrange-Fritz-John multipliers. When the set of constraints for (VP) is convex and under the generalized Slater constraint qualification introduced in Jeyakumar and Wolkowicz [11] , we derive necessary optimality conditions in terms of Lagrange-Karush-Kuhn-Tucker multipliers which are also sufficient whenever the functions gi,i=1,...,p are polyhedrals. Our approach consists in using a special scalarization function. A necessary optimality condition for convex vector maximization problem is derived. Also an application to vector fractional mathematical programming is given. Our contribution extends the results obtained in scalar optimization by Hiriart-Urruty [9] and improve substantially the few results known in vector case (see for instance: [11], [12] and [14]).Mathematics Subject Classification (1991). Primary: 90C29; Secondary 49K30  相似文献   

18.
Simulated annealing for complex portfolio selection problems   总被引:2,自引:0,他引:2  
This paper describes the application of a simulated annealing approach to the solution of a complex portfolio selection model. The model is a mixed integer quadratic programming problem which arises when Markowitz’ classical mean–variance model is enriched with additional realistic constraints. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of heuristic techniques. Computational experiments indicate that the approach is promising for this class of problems.  相似文献   

19.
The constrained optimization problem with a quadratic cost functional and two quadratic equality constraints has been studied by Bar-on and Grasse, with positive-definite matrix in the objective. In this note, we shall relax the matrix in the objective to be positive semidefinite. A necessary and sufficient condition to characterize a local optimal solution to be global is established. Also, a perturbation scheme is proposed to solve this generalized problem.  相似文献   

20.
Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization   总被引:2,自引:0,他引:2  
We prove a sufficient global optimality condition for the problem of minimizing a quadratic function subject to quadratic equality constraints where the variables are allowed to take values –1 and 1. We extend the condition to quadratic problems with matrix variables and orthonormality constraints, and in particular to the quadratic assignment problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号