首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
From the reaction of [Mn(III)(3)(micro-O)(micro-CH(3)CO(2))(6)]CH(3)CO(2) (manganese(III) acetate) and 2-anilino-4,6-di-tert-butylphenol (1:3) in methanol under anaerobic conditions, dark brown-black crystals of [Mn(III)(L(ISQ))(2)(L(AP))] (1) were obtained in approximately 30% yield. (L(AP))(-) represents the closed-shell o-aminophenolate(-) form of the above ligand, and (L(ISQ))(-) is the monoanionic pi radical form o-iminobenzosemiquinonate(-) (S(rad) = 1/2). Complex 1 can be deprotonated at the (L(AP))(-) ligand and one-electron-oxidized by air, yielding crystals of [Mn(IV)(L(ISQ))(2)(L(AP)-H)] (2), where (L(AP)-H)(2-) represents the closed-shell, dianionic o-amidophenolate(2-) form of the above ligand. The structures of 1 and 2 have been determined by X-ray crystallography at 100 K. The protonation and oxidation levels of the ligands and of the metal ions have been unequivocally established: both complexes contain two pi radical ligands, 1 contains a Mn(III) ion, and 2 contains a Mn(IV) ion. The spins of the radicals (S(rad) = 1/2) couple strongly antiferromagnetically with the d(4) and d(3) configuration of the Mn ions in 1 and 2, respectively, yielding the observed ground states of S = 1 for 1 and S = (1)/(2) for 2. This has been established by temperature-dependent susceptibility measurements (2-300 K) and S- and X-band EPR spectroscopy.  相似文献   

2.
Saha A  Abboud KA  Christou G 《Inorganic chemistry》2011,50(24):12774-12784
The syntheses, crystal structures, and magnetochemical characterization are reported for the new mixed-valent Mn clusters [Mn(2)(II)Mn(III)(O(2)CMe)(2)(edteH(2))(2)](ClO(4)) (1), [Mn(II)(2)Mn(III)(2)(edteH(2))(2)(hmp)(2)Cl(2)](Mn(II)Cl(4)) (2), [Mn(III)(6)O(2)(O(2)CBu(t))(6)(edteH)(2)(N(3))(2)] (3), [Na(2)Mn(III)(8)Mn(II)(2)O(4)(OMe)(2)(O(2)CEt)(6)(edte)(2)(N(3))(6)] (4), and (NEt(4))(2)[Mn(8)(III)Mn(2)(II)O(4)(OH)(2)-(O(2)CEt)(6)(edte)(2)(N(3))(6)](5), where edteH(4) is N,N,N',N'-tetrakis-(2-hydroxyethyl)ethylenediamine and hmpH is 2-(hydroxymethyl)pyridine. 1-5 resulted from a systematic exploration of the effect of different Mn sources, carboxylates, the presence of azide, and other conditions, on the Mn/edteH(4) reaction system. The core of 1 consists of a linear Mn(II)Mn(III)Mn(II) unit, whereas that of 2 is a planar Mn(4) rhombus within a [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane unit. The core of 3 comprises a central [Mn(III)(4)(OR)(2)] incomplete-dicubane on either side of which is edge-fused a triangular [Mn(III)(3)(μ(3)-O)] unit. The cores of 4 and 5 are similar and consist of a central [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane on either side of which is edge-fused a distorted [Mn(II)Mn(III)(3)(μ(3)-O)(2)(μ(3)-OR)(2)] cubane unit. Variable-temperature, solid-state direct current (dc) and alternating current (ac) magnetization studies were carried out on 1-5 in the 5.0-300 K range, and they established the complexes to have ground state spin values of S = 3 for 1, S = 9 for 2, and S = 4 for 3. The study of 3 provided an interesting caveat of potential pitfalls from particularly low-lying excited states. For 4 and 5, the ground state is in the S = 0-4 range, but its identification is precluded by a high density of low-lying excited states.  相似文献   

3.
4.
It has been found that [Mn(acac)(3)], by functioning both as a radical initiator and a hydroperoxide decomposition catalyst, has a very high activity in the autoxidation of ethyl linoleate (EL), a model compound for the binder molecule in household alkyd paint. Adding 1 equiv of bipyridine (bpy) to a reaction mixture of EL and [Mn(acac)(3)] significantly enhances the autoxidation rate. The redox properties of [Mn(acac)(3)] and [Mn(acac)(2)(bpy)] have been compared with cyclic voltammetry; the observed peak potentials show that addition of bpy facilitates reduction of Mn(III) to Mn(II), which may explain the increase in autoxidation activity.  相似文献   

5.
The present study focuses on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes formed in the [Fe(III)(tpfpp)X]/H(2)O(2)/HOO(-) system (TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin; X=Cl(-) or CF(3) SO(3)(-)) in acetonitrile under basic conditions at -15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high-spin [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] could be observed with the application of a low-temperature rapid-scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O-O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo- to heterolytic O-O bond cleavage is observed for high- [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron-rich porphyrin ligands, electron-deficient [Fe(III)(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [Fe(III)(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)-oxo porphyrin π-cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

6.
The preparation and characterization of the following bis-imidazole and bis-pyridine complexes of octamethyltetraphenylporphyrinatoiron(III), Fe(III)OMTPP, octaethyltetraphenylporphyrinatoiron(III), Fe(III)OETPP, and tetra-beta,beta'-tetramethylenetetraphenylporphyrinatoiron(III), Fe(III)TC(6)TPP, are reported: paral-[FeOMTPP(1-MeIm)(2)]Cl, perp-[FeOMTPP(1-MeIm)(2)]Cl, [FeOETPP(1-MeIm)(2)]Cl, [FeTC(6)TPP(1-MeIm)(2)]Cl, [FeOMTPP(4-Me(2)NPy)(2)]Cl, and [FeOMTPP(2-MeHIm)(2)]Cl. Crystal structure analysis shows that paral-[FeOMTPP(1-MeIm)(2)]Cl has its axial ligands in close to parallel orientation (the actual dihedral angle between the planes of the imidazole ligands is 19.5 degrees ), while perp-[FeOMTPP(1-MeIm)(2)]Cl has the axial imidazole ligand planes oriented at 90 degrees to each other and 29 degrees away from the closest N(P)-Fe-N(P) axis. [FeOETPP(1-MeIm)(2)]Cl has its axial ligands close to perpendicular orientation (the actual dihedral angle between the planes of the imidazole ligands is 73.1 degrees ). In all three cases the porphyrin core adopts relatively purely saddled geometry. The [FeTC(6)TPP(1-MeIm)(2)]Cl complex is the most planar and has the highest contribution of a ruffled component in the overall saddled structure compared to all other complexes in this study. The estimated numerical contribution of saddled and ruffled components is 0.68:0.32, respectively. Axial ligand planes are perpendicular to each other and 15.3 degrees away from the closest N(P)-Fe-N(P) axis. The Fe-N(P) bond is the longest in the series of octaalkyltetraphenylporphyrinatoiron(III) complexes due to [FeTC(6)TPP(1-MeIm)(2)]Cl having the least distorted porphyrin core. In addition to these three complexes, two crystalline forms each of [FeOMTPP(4-Me(2)NPy)(2)]Cl and [FeOMTPP(2-MeHIm)(2)]Cl were obtained. In all four of these cases the axial planes are in nearly perpendicular planes in spite of quite different geometries of the porphyrin cores (from purely saddled to saddled with 30% ruffling). The EPR spectral type correlates with the geometry of the OMTPP, OETPP and TC(6)TPP complexes. For the paral-[FeOMTPP(1-MeIm)(2)]Cl, a rhombic signal with g(1) = 1.54, g(2) = 2.51, and g(3) = 2.71 is consistent with nearly parallel axial ligand orientation. For all other complexes of this study, "large g(max)" signals are observed (g(max) = 3.61 - 3.27), as are observed for nearly perpendicular ligand plane arrangement. On the basis of this and previous work, the change from "large g(max)" to normal rhombic EPR signal occurs between axial ligand plane dihedral angles of 70 degrees and 30 degrees.  相似文献   

7.
Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates.  相似文献   

8.
The isolation, structural characterization and electronic properties of three new six-coordinated Mn(III) complexes, [Mn(bpea)(F)(3)] (1), [Mn(bpea)(N(3))(3)] (2), and [Mn(terpy)(F)(3)] (3) are reported (bpea = N,N-bis(2-pyridylmethyl)-ethylamine; terpy = 2,2':6',2' '-terpyridine). As for [Mn(terpy)(N(3))(3)] (4) (previously described by Limburg J.; Vrettos J. S.; Crabtree R. H.; Brudvig G. W.; de Paula J. C.; Hassan A.; Barra A-L.; Duboc-Toia C.; Collomb M-N. Inorg. Chem. 2001, 40, 1698), all these complexes exhibit a Jahn-Teller distortion of the octahedron characteristic of high-spin Mn(III) (S = 2). The analysis of the crystallographic data shows an elongation along the tetragonal axis of the octahedron for complexes 1 and 3, while complex 2 presents an unexpected compression. The electronic properties were investigated using a high-field and high-frequency EPR study performed between 5 and 15 K (190-575 GHz). The spin Hamiltonian parameters determined in solid state are in agreement with the geometry of the complexes observed in the crystal structures. A negative D value found for 1 and 3 is related to the elongated tetragonal distortion, whereas the positive D value determined for 2 is in accordance with a compressed octahedron. The high E/D values, in the range of 0.103 to 0.230 for all complexes, are correlated with the highly distorted geometry present around the Mn(III) ion. HF-EPR experiments were also performed on complex 1 in solution and show that the D value is the only spin Hamiltonian parameter which is slightly modified compared to the solid state (D = -3.67 cm(-1) in solid state; D = -3.95 cm(-1) in solution).  相似文献   

9.
High-field and frequency electron paramagnetic resonance (HFEPR) of solid (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III), 1, shows that in the solid state it is well described as an S = 2 (high-spin) Mn(III) complex of a trianionic ligand, [Mn(III)C(3)(-)], just as Mn(III) porphyrins are described as [Mn(III)P(2)(-)](+). Comparison among the structural data and spin Hamiltonian parameters reported for 1, Mn(III) porphyrins, and a different Mn(III) corrole, [(tpfc)Mn(OPPh(3))], previously studied by HFEPR (Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. J. Chem. Soc., Chem. Commun. 2000, 1957-1958), shows that despite the molecular asymmetry of the corrole macrocycle, the electronic structure of the Mn(III) ion is roughly axial. However, in corroles, the S = 1 (intermediate-spin) state is much lower in energy than in porphyrins, regardless of axial ligand. HFEPR of 1 measured at 4.2 K in pyridine solution shows that the S = 2 [Mn(III)C(3)(-)] system is maintained, with slight changes in electronic parameters that are likely the consequence of axial pyridine ligand coordination. The present result is the first example of the detection by HFEPR of a Mn(III) complex in solution. Over a period of hours in pyridine solution at ambient temperature, however, the S = 2 Mn(III) spectrum gradually disappears leaving a signal with g = 2 and (55)Mn hyperfine splitting. Analysis of this signal, also observable by conventional EPR, leads to its assignment to a manganese species that could arise from decomposition of the original complex. The low-temperature S = 2 [Mn(III)C(3)(-)] state is in contrast to that at room temperature, which is described as a S = 1 system deriving from antiferromagnetic coupling between an S = (3/2) Mn(II) ion and a corrole-centered radical cation: [Mn(II)C(*)(2-)] (Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M. O.; Tondello, E.; Boschi, T. Inorg. Chem. 1997, 36, 1564-1570). This temperature-dependent valence state isomerization has been observed for other metallotetrapyrroles.  相似文献   

10.
A series of homoleptic complexes with non-innocent ligands derived from N,N'-bis(pentafluorophenyl)-o-phenylenediamine (H(2)(F)pda) are reported. [Ni(II)((F)sbqdi)(2)] (1), [Pd(II)((F)sbqdi)(2)] (2), [Co(II)((F)sbqdi)(2)] (3), and [Cu(II)((F)sbqdi)(2)] (4) were synthesized, where ((F)sbqdi)(1-) represents a radical anion formed by one-electron oxidation of the doubly deprotonated H2(F)pda. The oxidation states of ligands and metals in complexes 1-4 were assigned by single crystal X-ray crystallography performed at low temperatures. Complex 4 is the first Cu(II) complex where both o-phenylenediamine derived ligands are monoanionic radicals. The bulky N-C6F5 substituents force the complexes 1, 3, and 4 to adopt a twisted geometry (intermediate between square-planar and tetrahedral). The electronic structures of the neutral compounds 1-4 and of some of their cationic and/or anionic neighboring redox states were probed using EPR and UV-VIS-NIR spectroelectrochemistry. The twisted geometry of the complexes results in considerable changes in their electronic structures compared to the well known square-planar complexes while the strongly electron withdrawing N-C6F5 groups have a great influence on redox properties.  相似文献   

11.
Wu G  Huang J  Sun L  Bai J  Li G  Cremades E  Ruiz E  Clérac R  Qiu S 《Inorganic chemistry》2011,50(17):8580-8587
The controlled organization of high-spin complexes, eventually single-molecule magnets, is a great challenge in molecular sciences to probe the possibility to design sophisticated magnetic systems to address a large quantity of magnetic information. The coordination chemistry is a tool of choice to make such materials. In this work, high-spin S(T) = 22 [Mn(10)] complexes, such as [Mn(III)(6)Mn(II)(4)(L(1))(6)(μ(4)-O)(4)(μ(3)-N(3))(4)(CH(3)CN)(11)(H(2)O)]·(ClO(4))(2)·(CH(3)CN)(8.5) (1), have been assembled using (i) 1,3-propanediol derivatives as chelating ligands to form the [Mn(10)] core units and (ii) dicyanamide or azide anions as linkers to synthesize the first 2D and 3D [Mn(10)]-based networks: [Mn(III)(6)Mn(II)(4)(L(2))(6)(μ(3)-N(3))(4)(μ(4)-O)(4)(CH(3)OH)(4)(dca)(2)] (2) and [Mn(III)(6)Mn(II)(4)(L(3))(6)(μ(3)-N(3))(4)(μ(4)-O)(4)(N(3))(2)]·(CH(3)OH)(4) (3). The synthesis of these compounds is reported together with their single-crystal X-ray structures and magnetic properties supported by DFT calculations. In the reported synthetic conditions, the stability of the [Mn(10)] complex is remarkably good that allows us to imagine many new materials combining these high-spin moieties and other diamagnetic but also paramagnetic linkers to design for example ordered magnets.  相似文献   

12.
Heterometallic linear tetramers [Mn(5-R-saltmen)Ni(pao)(bpy)(2)](2)(ClO(4))(4) (5-R-saltmen(2-) = N,N'-1,1,2,2-tetramethylethylene bis(5-R-salicylideneiminate); pao(-) = pyridine-2-aldoximate; bpy = 2,2'-bipyridine, R = H, 1; Cl, 2; Br, 3; MeO, 4) have been synthesized and structurally characterized. These compounds exhibit a [Ni(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-Ni(II)] skeleton where -ON- is an oximate bridge between Mn(III) and Ni(II) ions and -(O)(2)- is a bi-phenolate bridge between Mn(III) ions. These tetramers can be seen as oligomeric units of the heterometallic Mn(III)(2)-Ni(II) chain observed in a family of single-chain magnets (Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. Miyasaka, H.; Clérac, R.; Mizushima, K.; Sugiura, K.; Yamashita, M.; Wernsdorfer, W.; Coulon, C. Inorg. Chem. 2003, 42, 8203.). Magnetic measurements on these tetramers confirm the nature of the magnetic interactions reported for the Mn(III)(2)-Ni(II) chains: a strong antiferromagnetic Mn(III)/Ni(II) coupling via the oximate bridge (J(Ni-Mn) ranges from -23.7 to -26.1 K) and a weak ferromagnetic Mn(III)/Mn(III) coupling through the bi-phenolate bridge (J(Mn-Mn) ranges from +0.4 to +0.9 K). These magnetic interactions lead to tetramers with an S = 2 ground state.  相似文献   

13.
Chen H  Ma CB  Yuan DQ  Hu MQ  Wen HM  Liu QT  Chen CN 《Inorganic chemistry》2011,50(20):10342-10352
A family of Mn(III)/Ni(II) heterometallic clusters, [Mn(III)(4)Ni(II)(5)(OH)(4)(hmcH)(4)(pao)(8)Cl(2)]·5DMF (1·5DMF), [Mn(III)(3)Ni(II)(6)(N(3))(2)(pao)(10)(hmcH)(2)(OH)(4)]Br·2MeOH·9H(2)O (2·2MeOH·9H(2)O), [Mn(III)Ni(II)(5)(N(3))(4)(pao)(6)(paoH)(2)(OH)(2)](ClO(4))·MeOH·3H(2)O (3·MeOH·3H(2)O), and [Mn(III)(2)Ni(II)(2)(hmcH)(2)(pao)(4)(OMe)(2)(MeOH)(2)]·2H(2)O·6MeOH (4·2H(2)O·6MeOH) [paoH = pyridine-2-aldoxime, hmcH(3) = 2, 6-Bis(hydroxymethyl)-p-cresol], has been prepared by reactions of Mn(II) salts with [Ni(paoH)(2)Cl(2)], hmcH(3), and NEt(3) in the presence or absence of NaN(3) and characterized. Complex 1 has a Mn(III)(4)Ni(II)(5) topology which can be described as two corner-sharing [Mn(2)Ni(2)O(2)] butterfly units bridged to an outer Mn atom and a Ni atom through alkoxide groups. Complex 2 has a Mn(III)(3)Ni(II)(6) topology that is similar to that of 1 but with two corner-sharing [Mn(2)Ni(2)O(2)] units of 1 replaced with [Mn(3)NiO(2)] and [MnNi(3)O(2)] units as well as the outer Mn atom of 1 substituted by a Ni atom. 1 and 2 represent the largest 3d heterometal/oxime clusters and the biggest Mn(III)Ni(II) clusters discovered to date. Complex 3 possesses a [MnNi(5)(μ-N(3))(2)(μ-OH)(2)](9+) core, whose topology is observed for the first time in a discrete molecule. Careful examination of the structures of 1-3 indicates that the Mn/Ni ratios of the complexes are likely associated with the presence of the different coligands hmcH(2-) and/or N(3)(-). Complex 4 has a Mn(III)(2)Ni(II)(2) defective double-cubane topology. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-4. Fitting of the obtained M/(Nμ(B)) vs H/T data gave S = 5, g = 1.94, and D = -0.38 cm(-1) for 1 and S = 3, g = 2.05, and D = -0.86 cm(-1) for 3. The ground state for 2 was determined from ac data, which indicated an S = 5 ground state. For 4, the pairwise exchange interactions were determined by fitting the susceptibility data vs T based on a 3-J model. Complex 1 exhibits out-of-phase ac susceptibility signals, indicating it may be a SMM.  相似文献   

14.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

15.
Modification of the metal's electronic environment by ligand association and dissociation in metalloenzymes is considered cardinal to their catalytic activity. We have recently presented a novel system that utilizes the bacteriochlorophyll (BChl) macrocycle as a ligand and reporter. This system allows for charge mobilization in the equatorial plane and experimental estimate of changes in the electronic charge density around the metal with no modification of the metal's chemical environment. The unique spectroscopy, electrochemistry and coordination chemistry of [Ni]-bacteriochlorophyll ([Ni]-BChl) enable us to follow directly fine details and steps involved in the function of the metal redox center. This approach is utilized here whereby electro-chemical reduction of [Ni]-BChl to the monoanion [Ni]-BChl(-) results in reversible dissociation of biologically relevant axial ligands. Similar ligand dissociation was previously detected upon photoexcitation of [Ni]-BChl (Musewald, C.; Hartwich, G.; Lossau, H.; Gilch, P.; Pollinger-Dammer, F.; Scheer, H.; Michel-Beyerle, M. E. J. Phys. Chem. B 1999, 103, 7055-7060 and Noy, D.; Yerushalmi, R.; Brumfeld, V.; Ashur, I.; Baldridge, K. K.; Scheer, H.; Scherz, A. J. Am. Chem. Soc. 2000, 122, 3937-3944). The electrochemical measurements and quantum mechanical (QM) calculations performed here for the neutral, singly reduced, monoligated, and singly reduced, monoligated [Ni]-BChl suggest the following: (a) Electroreduction, although resulting in a pi anion [Ni]-BChl(-) radical, causes electron density migration to the [Ni]-BChl core. (b) Reduction of nonligated [Ni]-BChl does not change the macrocycle conformation, whereas axial ligation results in a dramatic expansion of the metal core and a flattening of the highly ruffled macrocycle conformation. (c) In both the monoanion and singly excited [Ni]-BChl ([Ni]-BChl*), the frontier singly occupied molecular orbital (SOMO) has a small but nonnegligible metal character. Finally, (d) computationally, we found that a reduction of [Ni]-BChl*imidazole results in a weaker metal-axial ligand bond. Yet, it remains weakly bound in the gas phase. The experimentally observed ligand dissociation is accounted for computationally when solvation is considered. On the basis of the experimental observations and QM calculations, we propose a mechanism whereby alterations in the equatorial pi system and modulation of sigma bonding between the axial ligands and the metal core are mutually correlated. Such a mechanism highlights the dynamic role of axial ligands in regulating the activity of metal centers such as factor F430 (F430), a nickel-based coenzyme that is essential in methanogenic archea.  相似文献   

16.
The ability of NCNH(-) to construct transition metal coordination polymers and to transmit magnetic coupling was investigated. By introduction of various tetradentate Schiff base ligands (L) and different solvents (S), nine NCNH(-)-bridged manganese(III) coordination complexes were obtained. Their structures can be divided into three types: I) NCNH-bridged chains built on mononuclear [Mn(III)(L)] units, [Mn(III)(L)(mu(1,3)-NCNH)](n) (L=5-Brsalen (1), 5-Clsalen (2)); II) NCNH-bridged chains built on dinuclear [Mn(III) (2)(L)(2)] units, complexes 3-8, [Mn(III) (2)(L)(2)(mu(1,3)-NCNH)]ClO(4)S (L=salen, 5-Fsalen, 5-Clsalen, 5-OCH(3)salen; S=CH(3)OH or C(2)H(5)OH); III) NCNH-bridged Mn(III) dimers linked by hydrogen bonds into a 1D polymer, {[Mn(III)(3-OCH(3)salen)(H(2)O)](2)(mu(1,3)-NCNH)}ClO(4) x 0.5 H(2)O (9, salen=N,N'-bis(salicylidene)-1,2-diaminoethane). In these complexes, the N[triple chemical bond]C--NH(-) resonance structure dominates the bonding mode of the NCNH(-) ligand adopting the mu(1,3)-bridging mode. Magnetic characterization shows that the asymmetric NCNH(-) bridge transmits antiferromagnetic interaction between Mn(III) ions and often favors the weak ferromagnetism caused by spin canting in these one-dimensional chains. However, these complexes exhibit different magnetic behaviors at low temperatures.  相似文献   

17.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

18.
Three new homo- and heterometallic hexanuclear complexes [Mn(2)M(II)(4)O(2)(PhCOO)(10)(DMF)(4)] (with M = Mn (1), Co (2) or Ni (3) and DMF = dimethylformamide) have been synthesized by redox generation of benzoate ligands from benzaldehyde in a one-pot reaction. All of the compounds are isostructural and crystallize in the I-42d space group of the tetragonal system, data for 1: a = 27.2249(8) Angstroms, c = 25.5182(5) Angstroms, R1 = 0.0681. The crystal structure contains isolated molecules. Each molecule consists of 2 x Mn(III) surrounded by four M(II) ions to form two edge-sharing OMn(2)M(2) tetrahedra giving rise to the [Mn(2)M(4)O(2)] core. The coordination sphere of each metal is completed by the bridging benzoate ligands and DMF molecules. The magnetic susceptibilities of 1-3 have been measured in the 1.8 K < T < 300 K temperature range. The magnetic susceptibilities for 1 and 2 pass through a broad maximum at low temperature which is characteristic of the diamagnetic ground state, while for 3 no maximum is detected down to 1.8 K. The magnetic data have been interpreted quantitatively for 1 and 3 on the basis of spin exchange interactions between the metallic centers (spin Hamiltonian for a pair being H(AB) = -J(AB) S(A).S(B)). Single-crystal measurements on [Mn(6)O(2)(PhCOO)(10)(CH(3)CN)(4)] (4) show that significant magnetic anisotropy develops at low temperature.  相似文献   

19.
The reactions of the Mn(III)(3) and Mn(II)Mn(III)(2) complexes [Mn(3)O(O(2)CEt)(6)(py)(3)][ClO(4)] and [Mn(3)O(O(2)CEt)(6)(py)(3)] with pyridine-2,6-dimethanol (pdmH(2)) afford the mixed-valence Mn(II)(6)Mn(III)(2) octanuclear complex [Mn(8)O(2)(py)(4)(O(2)CEt)(8)(L)(2)][ClO(4)](2) (1) and the Mn(II)(7)Mn(III)(2) enneanuclear complex [Mn(9)(O(2)CEt)(12)(pdm)(pdmH)(2)(L)(2)] (2), respectively. Both compounds contain a novel pentadentate ligand, the dianion of (6-hydroxymethylpyridin-2-yl)-(6-hydroxymethylpyridin-2-ylmethoxy)methanol (LH(2)), which is the hemiacetal formed in situ from the Mn-assisted oxidation of pdmH(2). Complex 1 crystallizes in the monoclinic space group P2(1)/n with the following cell parameters at -160 degrees C: a = 16.6942(5) A, b = 13.8473(4) A, c = 20.0766(6) A, beta = 99.880(1) degrees, V = 4572.27 A(3), and Z = 2, R (R(w)) = 4.78 (5.25). Complex 2.0.2MeCN crystallizes in the triclinic space group Ponemacr; with the following cell parameters at -157 degrees C: a = 12.1312(4) A, b = 18.8481(6) A, c = 23.2600(7) A, alpha = 78.6887(8) degrees, beta = 77.9596(8) degrees, gamma = 82.3176(8) degrees, V = 5076.45 A(3), and Z = 2, R (R(w)) = 4.12 (4.03). Both complexes are new structural types comprising distorted-cubane units linked together, albeit in two very different ways. In addition, complex 2 features three distinct binding modes for the chelating ligands derived from deprotonated pdmH(2). Complexes 1 and 2 were characterized by variable-temperature ac and dc magnetic susceptibility measurements and found to possess spin ground states of 0 and 11/2, respectively. Least-squares fitting of the reduced magnetization data gave S = 11/2, g = 2.0, and D = -0.11 cm(-1) for complex 2, where D is the axial zero-field splitting parameter. Direct current magnetization versus field studies on 2 at <1 K show hysteresis behavior at <0.3 K, establishing 2 as a new single-molecule magnet. Magnetization decay measurements gave an effective barrier to magnetization relaxation of U(eff) = 3.1 cm(-1) = 4.5 K.  相似文献   

20.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号