首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The taxol side chain (S(R),2R,3S)-N-tert-butanesulfinyl-O-Boc-3-phenylisoserine benzyl ester 4c was synthesized through a lithium enolate addition of O-Boc-alpha-hydroxyacetate benzyl ester 5c to benzylidene (S(R))-tert-butanesulfinamide 6a in excellent yield and diastereoselectivity. By similar approach, a series of enantiopure 3-substituted isoserine benzyl esters 4 useful for the semi-syntheses of taxol derivatives were also prepared in high to excellent yields and diastereoselectivities. The diastereoselective addition mechanism was discussed on the basis of the experimental observation.  相似文献   

2.
Four novel lysophosphatidylcholine (lysoPC) analogues, (S)-N-stearoyl-O-phosphocholineserine methyl ester [(S)-1a], (R)-1-lyso-2-stearoylamino-2-deoxy-sn-glycero-3-phosphatidylcholine [(R)-2a], (R)-N-stearoyl-O-phosphocholineserine methyl ester [(R)-1b], and (S)-1-lyso-2-stearoylamino-2-deoxy-sn-glycero-3-phosphatidylcholine [(S)-2b], were synthesized starting from serine as a chiral template. These synthetic compounds exhibited greatly enhanced hyphal transition inhibitory activity in Candida as compared to the natural lysoPC.  相似文献   

3.
战宏梅  胡昱  廖建  朱槿  邓金根 《合成化学》2007,15(5):588-590
以光学纯的(1S,5S)-5-叔丁氧羰基氨基-3-环己烯基甲酸为原料,经立体选择性地碘代内酯化、脱碘、醇解、水解、酯化5步反应首次合成了两个光学纯的γ-氨基酸衍生物——(1R,3S,5R)-5-羟基-3-叔丁氧羰基氨基环己基甲酸甲酯(总收率36.7%)和(1R,3S,5R)-5-羟基-3-叔丁氧羰基氨基环己基甲酸苄酯(总收率35.2%),其结构经1H NMR,13C NMR,IR和ESI-HR-MS确证。  相似文献   

4.
Carbocyclic uracil polyoxin C (+)-2 and its alpha-epimer (-)-3 were synthesized in an efficient fashion from cis-4-(N-tert-butylcarbamoyl)cyclopent-2-en-1-ol (+/-)-7. The synthesis incorporates a concise, inexpensive chemoenzymatic synthesis of enantiopure aminocyclopentenols, a Pd(0)-catalyzed substitution reaction, and a mild reduction of an alpha-nitro ester by TiCl(3)/sodium borohydride. Significantly, this process demonstrates the synthetic utility of the versatile enantiopure aminocyclopentenol building block (-)-4.  相似文献   

5.
A Diels-Alder cyclization proposed to occur during polyketide synthase assembly of the bicyclic core of lovastatin (1) (mevinolin) by Aspergillus terreus MF 4845 was examined via the synthesis of the N-acetylcysteamine (NAC) thioester of [2,11-(13)C(2)]-(E,E,E)-(R)-6-methyldodecatri-2,8,10-enoate (5a). In vitro Diels-Alder cyclization of the corresponding unlabeled NAC ester 5b, ethyl ester 18b, and acid 20b yielded two analogous diastereomers in each case, under either thermal or Lewis acid-catalyzed conditions. The reaction of thioester 5 proceeds readily at 22 degrees C in aqueous media. For 18b, one product is trans-fused ethyl (1R,2R,4aS, 6R,8aR)-1,2,4a,5,6,7,8,8a-octahydro-2,6-dimethylnaphthalene-1-carboxylate (30) (endo product), and the other is cis-fused ethyl (1R,2S,4aR,6R,8aR)-1,2,4a,5,6,7,8,8a-octahydro-2,6-dimethylnaphthalene-1-carboxylate (31) (exo product). Isomer 21 with stereochemistry analogous to 4a,5-dihydromonacolin L (2), a precursor of 1, was made by transformation of a tricyclic lactone, (1S,2S,4aR,6S,8S,8aS)-1-(ethoxycarbonyl)-1,2,4a,5,6,7,8,8a-octahydro-2-methyl-6,8-naphthalenecarbolactone (22) using reduction and Barton deoxygenation. Comparison of 21 with 30 and 31 confirmed the structural assignments and showed that the nonenzymatic 4 + 2 cyclizations of 5, 18, and 20 proceed via chairlike exo and endo transition states with the methyl substituent pseudoequatorial. The proposed biosynthetic Diels-Alder leading to lovastatin (1) would require an endo conformation with the methyl substituent pseudoaxial. Intact incorporation of the labeled hexaketide triene 5a into 1 was not achieved because of rapid degradation by A. terreus cells.  相似文献   

6.
The total synthesis of plakortide E (1a) is reported. A novel palladium-catalyzed approach towards 1,2-dioxolanes as well as an alternative substrate-controlled route leading exclusively to cis-highly substituted 1,2-dioxolanes have been developed. A lipase-catalyzed kinetic resolution was employed to provide optically pure 1,2-dioxolane central cores. Coupling of the central cores and side chains was achieved by a modified Negishi reaction. All four isomeric structures of plakortide E methyl ester, namely, 26a-d were synthesized. One of the structures, 26d, was shown to be identical with the natural plakortide E methyl ester on the basis of (1)H, (13)C NMR spectra and specific rotation comparisons. With the plakortide E methyl ester (4S,6R,10R)-(-)-cis-26d and its other three isomers in hand, we successfully converted them into (3S,4S,6R,10R)-plakortone B (2a), and its isomers ent-2a, 2b and ent-2b via an intramolecular oxa-Michael addition/lactonization cascade reaction. Finally, saponification converted 1,2-dioxolane 26d into plakortide E (1a) whose absolute configuration (4S,6R,10R) was confirmed by comparison of spectral and physical data with those reported.  相似文献   

7.
The C-glucopyranosyl nucleosides (1-4) containing the N-acetyl glucosaminyl and uridine units have been synthesized as nonhydrolyzable substrate analogues of UDP-GlcNAc aimed to inhibit the chitin synthases. The key intermediate, 4-(2'-(N-acetylamino)-3', 4',6'-tri-O-benzyl-2'-deoxy-alpha-D-glucopyranosyl)but-2-enoic acid (5), was prepared from the perbenzylated (N-acetylamino)-alpha-C-allylglucoside (7), by successive oxidative cleavage, Wittig olefination, and ester deprotection. The coupling of the acid 5 with the hydroxyl or amine function of the uridine derivatives (6a or 6b) afforded, respectively, the ester 12 and amide 14. The dihydroxylation of the conjugated double bond in ester 12 or amide 14 was better achieved with osmium tetraoxide/barium chlorate, leading to the expected diols 13 and 15 as a mixture of two diastereoisomers. The desired compounds 1-4 were obtained after catalytic hydrogenation of compounds 12-15.  相似文献   

8.
Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxypyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed k(cat) 0.5 ± 0.1 min(-1) and K(m)(1) 19 ± 5 mM at 0.5 mM MM-CoA and k(cat)(app) 0.26 ± 0.02 min(-1) and K(m)(MM-CoA) 0.11 ± 0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(-)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with the recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2.  相似文献   

9.
Optically pure (5R)- [and (5S)]-5,6-dihydro-5-phenyl-2H-1, 4-oxazin-2-one N-oxides [(5R)- and (5S)-2] were designed as chiral (E)-geometry-fixed alpha-alkoxycarbonylnitrones 1. The nitrones (5R)- and (5S)-2 were synthesized by three-step oxidation of (R)- and (S)-phenylglycinols [(R)- and (S)-3], condensation of the resulting (R)- and (S)-2-hydroxylamino-2-phenylethanols [(R)- and (S)-5] with glyoxylic acid, and cyclization of the intermediary nitrones (R)- and (S)-6b. The nitrone (5R)-2reacted with olefins 7-14 under mild conditions to afford the corresponding cycloadducts 15-22 as the main products via the least sterically demanding exo modes. Cycloadduct 30 obtained from (5S)-2 and cyclopentadiene was effectively elaborated to (1S,4S, 5R)-4-benzyloxycarbonylamino-2-oxabicyclo[3.3.0]oct-7-en-3-one (28), the key synthetic intermediate of carbocyclic polyoxin C.  相似文献   

10.
王平珍  涂永强  李心 《化学学报》2000,58(4):458-463
以天然薄荷酮为原料,立体选择性地合成了具有抗艾滋病活性的化合物DidemnaketalsAC(1)~C(8)片段,(3S,5R,6S)-3-甲基-5,6-丙酮化物-7-氧代-辛酸甲酯及其6R异构体。  相似文献   

11.
Picromycin synthase (PICS) is a multifunctional, modular polyketide synthase (PKS) that catalyzes the conversion of methylmalonyl-CoA to narbonolide and 10-deoxymethynolide, the macrolide aglycone precursors of the antibiotics picromycin and methymycin, respectively. PICS modules 5 and 6 were each expressed in Escherichia coli with a thioesterase domain at the C-terminus to allow release of polyketide products. The substrate specificity of PICS modules 5+TE and 6+TE was investigated using N-acetylcysteamine thioesters of 2-methyl-3-hydroxy-pentanoic acid as diketide analogues of the natural polyketide chain elongation substrates. PICS module 5+TE could catalyze the chain elongation of only the syn diketide (2S,3R)-4, while PICS module 6+TE processed both syn diastereomers, (2S,3R)-4 and (2R,3S)-5, with a 2.5:1 preference in k(cat)/K(m) for 5 but did not turn over either of the two anti diketides. The observed substrate specificity patterns are in contrast to the 15-100:1 preference for 4 over 5 previously established for several modules of the closely related erythromycin PKS, 6-deoxyerythronolide B synthase (DEBS).  相似文献   

12.
The enzymatic synthesis of thymidine from 2-deoxy-D-ribose-5-phosphate is achieved, in a one-pot two-step reaction using phosphoribomutase (PRM) and commercially available thymidine phosphorylase (TP). In the first step the sugar-5-phosphate is enzymatically rearranged to alpha-2-deoxy-D-ribose-1-phosphate. Highly active PRM is easily obtained from genetically modified overproducing E. coli cells (12,000 units/84 mg protein) and is used without further purification. In the second step thymine is coupled to the sugar-1-phosphate. The thermodynamically unfavorable equilibrium is shifted to the product by addition of MnCl(2) to precipitate inorganic phosphate. In this way the overall yield of the beta-anomeric pure nucleoside increases from 14 to 60%. In contrast to uracil, cytosine is not accepted by TP as a substrate. Therefore, 2'-deoxy-cytidine is obtained by functional group transformations of the enzymatically prepared 2'-deoxy-uridine. The method has been demonstrated by the synthesis of [2',5'-(13)C(2)]- and [1',2',5'-(13)C(3)]thymidine as well as [1',2',5'-(13)C(3)]2'-deoxyuridine and [3',4'-(13)C(2)]2'-deoxycytidine. In addition the nucleoside bases thymine and uracil are tetralabeled at the (1,3-(15)N(2),2,4-(13)C(2))-atomic positions. All compounds are prepared without any scrambling or dilution of the labeled material and are thus obtained with a very high isotope enrichment (96-99%). In combination with the methods that have been developed earlier it is concluded that each of the (13)C- and (15)N-positions and combination of positions of the pyrimidine deoxynucleosides can be efficiently labeled starting from commercially available and highly (13)C- or (15)N-enriched formaldehyde, acetaldehyde, acetic acid, potassium cyanide, methylamine hydrochloride, and ammonia.  相似文献   

13.
Two py-hexahydrocinchonidine diastereomers were selectively obtained in the heterogeneous catalytic hydrogenation of cinchonidine over supported Pt catalyst. The two isolated compounds when used as chiral base catalysts in the Michael addition of a beta-keto ester to methyl vinyl ketone gave products of opposite configuration in excess. To trace the reason of this behavior, in the present study, the structures of the two diastereomers were fully optimized by ab initio quantum chemical calculation. These results were then compared with several nuclear Overhauser enhancement spectroscopy (NOESY) signal intensities from the spectra of the two compounds. Further we performed a conformational search on all the optimized geometries independently for the two flexible torsional angles, which are linking the quinuclidine and tetrahydroquinoline moieties present in these molecules. This study allowed us to propose the configuration of the C(4)(') chiral center. Thus, the product mixture resulted in the hydrogenation of cinchonidine containing the 4'-(S)-diastereomer in excess (de = 20%). According to the computation results the 4'-(S)-diastereomer is more stable than the 4'-(R)-diastereomer. The 4'-(S)-conformer obtained by computation has lower electronic energy than the structures obtained for the 4'-(R)-diastereomer, which may explain the excess formation of the first one. The results of the Michael addition catalyzed by these diastereomers were interpreted on the basis of these conclusions.  相似文献   

14.
To obtain detailed data on the kinetics of hydrolytic reactions of triester-like nucleoside 5'-O-aryl-N-alkylphosphoramidates, potential prodrugs of antiviral nucleoside monophosphates, the hydrolysis of diastereomeric (Rp/Sp) thymidine 5'-{O-phenyl-N-[(1S)-2-oxo-2-methoxy-1-methylethyl]phosphoramidate} (3), a phosphoramidate derived from the methyl ester of L-alanine, has been followed by reversed-phase HPLC over the range from Ho=0 to pH 8 at 90 degrees C. According to the time-dependent product distributions, the hydrolysis of 3 proceeds at pH<4 by two parallel routes, namely by nucleophilic displacement of the alaninyl ester moiety by a water molecule and by hydrolysis of the carboxylic ester linkage that allows intramolecular attack of the carboxy group on the phosphorus atom, thereby resulting in the departure of either thymidine or phenol without marked accumulation of any intermediates. Both routes represent about half of the overall disappearance of 3. The departure of phenol eventually leads to the formation of thymidine 5'-phosphate. At pH>5, the predominant reaction is hydrolysis of the carboxylic ester linkage followed by intramolecular displacement of a phenoxide ion by the carboxylate ion and hydrolysis of the resulting cyclic mixed anhydride into an acyclic diester-like thymidine 5'-phosphoramidate. The latter product accumulated quantitatively without any indication of further decomposition. Hydroxide-ion-catalyzed P--OPh bond cleavage of the starting material 3 occurred as a side reaction. Comparative measurements with thymidine 5'-{N-[(1S)-2-oxo-2-methoxy-1-methylethyl]phosphoramidate} (4) revealed that, under acidic conditions, this diester-like compound is hydrolyzed by P--N bond cleavage three orders of magnitude more rapidly than the triester-like 3. At pH>5, the stability order is reversed, with 3 being hydrolyzed six times as rapidly as 4. Mechanisms of the partial reactions are discussed.  相似文献   

15.
Photochemical reactions between 5-bromo-1,3-dimethyluracils and 3-substituted indoles in acetone solution were studied. Irradiation (lambda greater than 290 nm) of 5-bromo-1,3-dimethyluracil (1) and N alpha-acetyl-L-tryptophan methyl ester (2) yields, in addition to 5-(2-indolyl)uracil (3), a new photoadduct 5-(7-indolyl)uracil (4). 5-Bromo-1,3-dimethyluracils with 6-alkyl substituents irradiated in the presence of 2 give the 5-(2-indolyl)uracil-type photoadducts exclusively.  相似文献   

16.
Cascade thermal and decarboxylative cycloaddition reactions of uracil polyoxin C (UPoC) with mono- and di-carbonyl compounds in the presence of a dipolarophile leads, via stabilised and non-stabilised azomethine ylides respectively, to a series of polyoxin cycloadducts related to Nikkomycin B in good to excellent yields and high diastereoselectivity.  相似文献   

17.
The conformationally restricted nicotinoid (1S,4S)-7-methyl-7-azabicyclo[2.2.1]heptano[2,3-c]pyridine dihydrochloride has been prepared enantiospecifically from D-glutamic acid. The method involved a lithium cis-2,6-dimethylpiperidide-mediated intramolecular anionic cyclization of (2S,5R)-N-(tert-butyloxycarbonyl)-5-[3-(4-N-chloropyridinyl]proline methyl ester in tandem with a standard decarboxylation sequence. Reductive amination afforded the desired N-methylated [2.2.1]bicyclonicotinoid. Cyclization of the corresponding iodopyridinylproline methyl ester, obtained via ultrasound-facilitated chloro-iodo exchange, was also effected.  相似文献   

18.
Two routes from D-glucose to chiral, ring-contracted analogs of the second messenger D-myo-inositol 1,4,5-trisphosphate are described. Methyl alpha-D-glucopyranoside was converted by an improved procedure into methyl 4,6-O-(p-methoxybenzylidene)-alpha-D-glucopyranoside (6) and thence into methyl 2-O-benzyl-3,4-bis-O-(p-methoxybenzyl)-alpha-D-gluco-hexodialdopyranoside (1,5) (14) in four steps. In the first ring-contraction method 14 was converted into methyl 2-O-benzyl-6,7-dideoxy-3,4-bis-O-(p-methoxybenzyl)-alpha-D-gluco-hept-6-enopyranoside (1,5) (15), which on sequential treatment with Cp(2)Zr(n-Bu)(2) followed by BF(3).Et(2)O afforded a mixture of (1R,2S,3S,4R,5S)-3-(benzyloxy)-4-hydroxy-1,2-bis[(p-methoxybenzyl)oxy]-5-vinylcyclopentane (16) and its 4S,5R diastereoisomer 17. Removal of the p-methoxybenzyl groups of 16 and subsequent phosphorylation and deprotection afforded the first target compound, (1R,2R,3S,4R,5S)-3-hydroxy-1,2,4-tris(phosphonooxy)-5-vinylcyclopentane (3). In the second route, intermediate 14 was subjected to SmI(2)-mediated ring contraction to give (1R,2S,3S,4R,5S)-3-(benzyloxy)-4-hydroxy-5-(hydroxymethyl)-1,2-bis[(p-methoxybenzyl)oxy]cyclopentane (20). Benzylation of 20 provided (1R,2S,3S,4R,5S)-3-(benzyloxy)-6-[(benzyloxy)methyl]-4-hydroxy-1,2-bis[(p-methoxybenzyl)oxy]cyclopentane (22) and (1R,2S,3S,4R,5S)-3,4-bis(benzyloxy)-5-(hydroxymethyl)-1,2-bis[(p-methoxybenzyl)oxy]cyclopentane (21), which were elaborated to the target trisphosphates (1R,2R,3S,4R,5S)-3-hydroxy-5-(hydroxymethyl)-1,2,4-tris(phosphonooxy)cyclopentane (4) and (1R,2S,3R,4R,5S)-1,2-dihydroxy-3,4-bis(phosphonooxy)-5-[(phosphonooxy)methyl]cyclopentane (5), respectively. Both 3 and 4 mobilized intracellular Ca(2+), but 4 was only a few fold less potent than D-myo-inositol 1,4,5-trisphosphate, demonstrating that effective mimics can be designed that do not bear a six-membered ring.  相似文献   

19.
A synthesis of the bistetrahydrofuran Annonaceous acetogenins 30(S)-hydroxybullatacin, uvarigrandin A, and 5(R)-uvarigrandin A through application of a previously disclosed four-component modular approach is described in which extended core segments are coupled to a C4- or C5-hydroxy butenolide terminus. The butenolide termini segments were prepared from (S)- or (R)-malic acid. Spectral properties of synthetic 30(S)-hydroxybullatacin and uvarigrandin A, as well as their Mosher ester derivatives, were in close agreement to the reported values for the natural substances. The synthetic 5(R)-uvarigrandin A is possibly identical to narumicin I, but subtle differences in the reported NMR spectra prevented an unambiguous assessment of this point.  相似文献   

20.
The dehydratase (DH) domain of module 4 of the 6-deoxyerythronolide B synthase (DEBS) has been shown to catalyze an exclusive syn elimination/syn addition of water. Incubation of recombinant DH4 with chemoenzymatically prepared anti-(2R,3R)-2-methyl-3-hydroxypentanoyl-ACP (2a-ACP) gave the dehydration product 3-ACP. Similarly, incubation of DH4 with synthetic 3-ACP resulted in the reverse enzyme-catalyzed hydration reaction, giving an ~3:1 equilbrium mixture of 2a-ACP and 3-ACP. Incubation of a mixture of propionyl-SNAC (4), methylmalonyl-CoA, and NADPH with the DEBS β-ketoacyl synthase-acyl transferase [KS6][AT6] didomain, DEBS ACP6, and the ketoreductase domain from tylactone synthase module 1 (TYLS KR1) generated in situ anti-2a-ACP that underwent DH4-catalyzed syn dehydration to give 3-ACP. DH4 did not dehydrate syn-(2S,3R)-2b-ACP, syn-(2R,3S)-2c-ACP, or anti-(2S,3S)-2d-ACP generated in situ by DEBS KR1, DEBS KR6, or the rifamycin synthase KR7 (RIFS KR7), respectively. Similarly, incubation of a mixture of (2S,3R)-2-methyl-3-hydroxypentanoyl-N-acetylcysteamine thioester (2b-SNAC), methylmalonyl-CoA, and NADPH with DEBS [KS6][AT6], DEBS ACP6, and TYLS KR1 gave anti-(2R,3R)-6-ACP that underwent syn dehydration catalyzed by DEBS DH4 to give (4R,5R)-(E)-2,4-dimethyl-5-hydroxy-hept-2-enoyl-ACP (7-ACP). The structure and stereochemistry of 7 were established by GC-MS and LC-MS comparison of the derived methyl ester 7-Me to a synthetic sample of 7-Me.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号