首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extremal dependence behavior of t copulas is examined and their extreme value limiting copulas, called the t-EV copulas, are derived explicitly using tail dependence functions. As two special cases, the Hüsler–Reiss and the Marshall–Olkin distributions emerge as limits of the t-EV copula as the degrees of freedom go to infinity and zero respectively. The t copula and its extremal variants attain a wide range in the set of bivariate tail dependence parameters. Supported by NSERC Discovery Grant.  相似文献   

2.
Modeling dependence in high-dimensional systems has become an increasingly important topic. Most approaches rely on the assumption of a multivariate Gaussian distribution such as statistical models on directed acyclic graphs (DAGs). They are based on modeling conditional independencies and are scalable to high dimensions. In contrast, vine copula models accommodate more elaborate features like tail dependence and asymmetry, as well as independent modeling of the marginals. This flexibility comes however at the cost of exponentially increasing complexity for model selection and estimation. We show a novel connection between DAGs with limited number of parents and truncated vine copulas under sufficient conditions. This motivates a more general procedure exploiting the fast model selection and estimation of sparse DAGs while allowing for non-Gaussian dependence using vine copulas. By numerical examples in hundreds of dimensions, we demonstrate that our approach outperforms the standard method for vine structure selection. Supplementary material for this article is available online.  相似文献   

3.
This paper introduces a method for constructing copula functions by combining the ideas of distortion and convex sum, named Distorted Mix Method. The method mixes different copulas with distorted margins to construct new copula functions, and it enables us to model the dependence structure of risks by handling the central and tail parts separately. By applying the method we can modify the tail dependence of a given copula to any desired level measured by tail dependence function and tail dependence coefficients of marginal distributions. As an application, a tight bound for asymptotic Value-at-Risk of order statistics is obtained by using the method. An empirical study shows that copulas constructed by this method fit the empirical data of SPX 500 Index and FTSE 100 Index very well in both central and tail parts.  相似文献   

4.
In order to study copula families that have tail patterns and tail asymmetry different from multivariate Gaussian and t copulas, we introduce the concepts of tail order and tail order functions. These provide an integrated way to study both tail dependence and intermediate tail dependence. Some fundamental properties of tail order and tail order functions are obtained. For the multivariate Archimedean copula, we relate the tail heaviness of a positive random variable to the tail behavior of the Archimedean copula constructed from the Laplace transform of the random variable, and extend the results of Charpentier and Segers [7] [A. Charpentier, J. Segers, Tails of multivariate Archimedean copulas, Journal of Multivariate Analysis 100 (7) (2009) 1521–1537] for upper tails of Archimedean copulas. In addition, a new one-parameter Archimedean copula family based on the Laplace transform of the inverse Gamma distribution is proposed; it possesses patterns of upper and lower tails not seen in commonly used copula families. Finally, tail orders are studied for copulas constructed from mixtures of max-infinitely divisible copulas.  相似文献   

5.
A notion of tail dependence based on operator regular variation is introduced for copulas, and the standard tail dependence used in the copula literature is included as a special case. The non-standard tail dependence with marginal power scaling functions having possibly distinct tail indexes is investigated in detail. We show that the copulas with operator tail dependence, incorporated with regularly varying univariate margins, give rise to a rich class of the non-standard multivariate regularly varying distributions. We also show that under some mild conditions, the copula of a non-standard multivariate regularly varying distribution has the standard tail dependence of order 1. Some illustrative examples are given.  相似文献   

6.
Reliability analysis requires modeling of joint probability distribution of uncertain parameters, which can be a challenge since the random variables representing the parameter uncertainties may be correlated. For convenience, a Gaussian data dependence is commonly assumed for correlated random variables. This paper first investigates the effect of multidimensional non-Gaussian data dependences underlying the multivariate probability distribution on reliability results. Using different bivariate copulas in a vine structure, various data dependences can be modeled. The associated copula parameters are identified from available statistical information by moment matching techniques. After the development of the vine copula model for representing the multivariate probability distribution, the reliability involving correlated random variables is evaluated based on the Rosenblatt transformation. The impact of data dependence is significant because a large deviation in failure probability is observed, which emphasizes the need for accurate dependence characterization. A practical method for dependence modeling based on limited data is thus provided. The result demonstrates that the non-Gaussian data dependences can be real in practice, and the reliability can be biased if the Gaussian dependence is used inappropriately. Moreover, the effect of conditioning order on reliability should not be overlooked except that the vine structure contains only one type of copula.  相似文献   

7.
In this article, copulas associated to multivariate conditional distributions in an Archimedean model are characterized. It is shown that this popular class of dependence structures is closed under the operation of conditioning, but that the associated conditional copula has a different analytical form in general. It is also demonstrated that the extremal copula for conditional Archimedean distributions is no longer the Fréchet upper bound, but rather a member of the Clayton family. Properties of these conditional distributions as well as conditional versions of tail dependence indices are also considered.  相似文献   

8.
In this paper we model the dependence structure between credit default swap (CDS) and jump risk using Archimedean copulas. The paper models and estimates the different relationships that can exist in different ranges of behaviour. It studies the bivariate distributions of CDS index spreads and the kurtosis of equity return distribution. To take into account nonlinear relationships and different structures of dependency, we employ three Archimedean copula functions: Gumbel, Clayton, and Frank. We adopt nonparametric estimation of copula parameters and we find an extreme co-movement of CDS and stock market conditions. In addition, tail dependence indicates the extreme co-movements and the potential for a simultaneous large loss in stock markets and a significant default risk. Ignoring the tail dependence would lead to underestimation of the default risk premium.  相似文献   

9.
基于“藤”结构的高维动态Copula的构建   总被引:4,自引:0,他引:4  
高维化和动态化是当前Copula理论研究和应用的两个重要方向.采用图形建模工具中"藤"的层叠结构,以二元动态Copula取代原有二元静态Copula作为"藤"的节点,将高维Copula建模中"藤"的方法与动态Copula相结合,构造了"动态藤Copula".实证表明,高维动态藤Copula较相应的高维静态藤Copula对数据的概率模型的似然率更高.  相似文献   

10.
This work proposes a new copula class that we call the MGB2 copula. The new copula originates from extracting the dependence function of the multivariate GB2 distribution (MGB2) whose marginals follow the univariate generalized beta distribution of the second kind (GB2). The MGB2 copula can capture non-elliptical and asymmetric dependencies among marginal coordinates and provides a simple formulation for multi-dimensional applications. This new class features positive tail dependence in the upper tail and tail independence in the lower tail. Furthermore, it includes some well-known copula classes, such as the Gaussian copula, as special or limiting cases.To illustrate the usefulness of the MGB2 copula, we build a trivariate MGB2 copula model of bodily injury liability closed claims. Extended GB2 distributions are chosen to accommodate the right-skewness and the long-tailedness of the outcome variables. For the regression component, location parameters with continuous predictors are introduced using a nonlinear additive function. For comparison purposes, we also consider the Gumbel and t copulas, alternatives that capture the upper tail dependence. The paper introduces a conditional plot graphical tool for assessing the validation of the MGB2 copula. Quantitative and graphical assessment of the goodness of fit demonstrate the advantages of the MGB2 copula over the other copulas.  相似文献   

11.
通过双参数Copula分析上证指数和恒生指数的尾部相关性,并与单参数Copula及混合Copula进行比较分析,参数估计使用半参数估计法,结果表明:与单参数Clayton Copula、Gumbel-Hougaard Copula以及由两者组成的混合Copula相比,双参数BB1 Copula对数据具有更好的拟合效果;且通过分析发现两股市的上尾相关性大于下尾相关性.  相似文献   

12.
Tail dependence copulas provide a natural perspective from which one can study the dependence in the tail of a multivariate distribution. For Archimedean copulas with continuously differentiable generators, regular variation of the generator near the origin is known to be closely connected to convergence of the lower tail dependence copulas to the Clayton copula. In this paper, these characterizations are refined and extended to the case of generators which are not necessarily continuously differentiable. Moreover, a counterexample is constructed showing that even if the generator of a strict Archimedean copula is continuously differentiable and slowly varying at the origin, then the lower tail dependence copulas still do not need to converge to the independent copula.  相似文献   

13.
A two-parametric family of bivariate extreme-value copulas (EVCs), which corresponds to precisely the bivariate EVCs whose Pickands dependence measure is discrete with at most two atoms, is introduced and analyzed. It is shown how bivariate EVCs with arbitrary discrete Pickands dependence measure can be represented as the geometric mean of such basis copulas. General bivariate EVCs can thus be represented as the limit of this construction when the number of involved basis copulas tends to infinity. Besides the theoretical value of such a representation, it is shown how several properties of the represented copula can be deduced from properties of the involved basis copulas. An algorithm for the computation of the representation is given.  相似文献   

14.
Tail order of copulas can be used to describe the strength of dependence in the tails of a joint distribution. When the value of tail order is larger than the dimension, it may lead to tail negative dependence. First, we prove results on conditions that lead to tail negative dependence for Archimedean copulas. Using the conditions, we construct new parametric copula families that possess upper tail negative dependence. Among them, a copula based on a scale mixture with a generalized gamma random variable (GGS copula) is useful for modeling asymmetric tail negative dependence. We propose mixed copula regression based on the GGS copula for aggregate loss modeling of a medical expenditure panel survey dataset. For this dataset, we find that there exists upper tail negative dependence between loss frequency and loss severity, and the introduction of tail negative dependence structures significantly improves the aggregate loss modeling.  相似文献   

15.
Orthant tail dependence of multivariate extreme value distributions   总被引:2,自引:0,他引:2  
The orthant tail dependence describes the relative deviation of upper- (or lower-) orthant tail probabilities of a random vector from similar orthant tail probabilities of a subset of its components, and can be used in the study of dependence among extreme values. Using the conditional approach, this paper examines the extremal dependence properties of multivariate extreme value distributions and their scale mixtures, and derives the explicit expressions of orthant tail dependence parameters for these distributions. Properties of the tail dependence parameters, including their relations with other extremal dependence measures used in the literature, are discussed. Various examples involving multivariate exponential, multivariate logistic distributions and copulas of Archimedean type are presented to illustrate the results.  相似文献   

16.
The analysis of multivariate time series is a common problem in areas like finance and economics. The classical tools for this purpose are vector autoregressive models. These however are limited to the modeling of linear and symmetric dependence. We propose a novel copula‐based model that allows for the non‐linear and non‐symmetric modeling of serial as well as between‐series dependencies. The model exploits the flexibility of vine copulas, which are built up by bivariate copulas only. We describe statistical inference techniques for the new model and discuss how it can be used for testing Granger causality. Finally, we use the model to investigate inflation effects on industrial production, stock returns and interest rates. In addition, the out‐of‐sample predictive ability is compared with relevant benchmark models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
For multivariate data from an observational study, inferences of interest can include conditional probabilities or quantiles for one variable given other variables. For statistical modeling, one could fit a parametric multivariate model, such as a vine copula, to the data and then use the model-based conditional distributions for further inference. Some results are derived for properties of conditional distributions under different positive dependence assumptions for some copula-based models. The multivariate version of the stochastically increasing ordering of conditional distributions is introduced for this purpose. Results are explained in the context of multivariate Gaussian distributions, as properties for Gaussian distributions can help to understand the properties of copula extensions based on vines.  相似文献   

18.
Tail dependence refers to clustering of extreme events. In the context of financial risk management, the clustering of high-severity risks has a devastating effect on the well-being of firms and is thus of pivotal importance in risk analysis.When it comes to quantifying the extent of tail dependence, it is generally agreed that measures of tail dependence must be independent of the marginal distributions of the risks but rather solely copula-dependent. Indeed, all classical measures of tail dependence are such, but they investigate the amount of tail dependence along the main diagonal of copulas, which has often little in common with the concentration of extremes in the copulas’ domain of definition.In this paper we urge that the classical measures of tail dependence may underestimate the level of tail dependence in copulas. For the Gaussian copula, however, we prove that the classical measures are maximal. The implication of the result is two-fold: On the one hand, it means that in the Gaussian case, the (weak) measures of tail dependence that have been reported and used are of utmost prudence, which must be a reassuring news for practitioners. On the other hand, it further encourages substitution of the Gaussian copula with other copulas that are more tail dependent.  相似文献   

19.
A useful application for copula functions is modeling the dynamics in the conditional moments of a time series. Using copulas, one can go beyond the traditional linear ARMA (p,q) modeling, which is solely based on the behavior of the autocorrelation function, and capture the entire dependence structure linking consecutive observations. This type of serial dependence is best represented by a canonical vine decomposition, and we illustrate this idea in the context of emerging stock markets, modeling linear and nonlinear temporal dependences of Brazilian series of realized volatilities. However, the analysis of intraday data collected from e‐markets poses some specific challenges. The large amount of real‐time information calls for heavy data manipulation, which may result in gross errors. Atypical points in high‐frequency intraday transaction prices may contaminate the series of daily realized volatilities, thus affecting classical statistical inference and leading to poor predictions. Therefore, in this paper, we propose to robustly estimate pair‐copula models using the weighted minimum distance and the weighted maximum likelihood estimates (WMLE). The excellent performance of these robust estimates for pair‐copula models are assessed through a comprehensive set of simulations, from which the WMLE emerged as the best option for members of the elliptical copula family. We evaluate and compare alternative volatility forecasts and show that the robustly estimated canonical vine‐based forecasts outperform the competitors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Copula functions can be useful in accounting for various dependence patterns appearing in joint tails of data. We propose a new two-parameter bivariate copula family that possesses the following features. First, both upper and lower tails are able to explain full-range tail dependence. That is, the dependence in each tail can range among quadrant tail independence, intermediate tail dependence, and usual tail dependence. Second, it can capture upper and lower tail dependence patterns that are either the same or different. We first prove the full-range tail dependence property, and then we obtain the corresponding extreme value copula. There are two applications based on the proposed copula. The first one is modeling pairwise dependence between financial markets. The second one is modeling dynamic tail dependence patterns that appear in upper and lower tails of a loss-and-expense data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号