首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present structural and optical properties of silver clusters Agn (n=2, 4, 6, 8) at two model support sites of MgO, stoichiometric MgO(100) and FS-center defect, based on density functional theory and embedded cluster model. Our results provide the mechanism responsible for the absorption and emission patterns due to the specific interaction between the excitations within the cluster and the support site which is strongly cluster size and structure dependent. We propose Ag4 at stoichiometric site as well as Ag2, Ag4 and Ag6 at FS-center defects as good candidates for the emissive centers in the visible regime.  相似文献   

2.
Here, we present the dynamical aspects and the role of internal energy redistribution (IVR) in the reactivity of noble metal clusters towards O2. We show on the example of Ag3O2 - / Ag3O2 / Ag3O2 + that NeNePo spectroscopy carried out under zero electron kinetic energy (ZEKE) conditions can be a powerful tool to investigate the geometry relaxation and IVR induced by photodetachment in real time. Furthermore, we demonstrate that difference in the reactivity of Ag6 - and Au6 - towards O2 can be attributed to different nature of the IVR process. Dissipative IVR in Ag6 - favors fast complex stabilization, whereas resonant IVR found for Au6 - might be an important factor determining the catalytic activity of Au6 - cluster in the CO oxidation.  相似文献   

3.
In this paper, we present results from our joint experimental and theoretical study of the reactivity of anionic gold oxide clusters Au2,3O1-4 - towards CO. We provide clear evidence that, although O–O bond weakening/dissociation is important to enable CO oxidation, the presence of atomic oxygen can be favorable but is not always sufficient. Furthermore, we show that with the addition of a single gold atom the reactivity channels can be changed. As a consequence, in contrast to CO oxidation in the case of anionic gold dimer oxides, association of CO or replacement of O2 by CO become the dominant reaction channels for Au3On -. This demonstrates the nonscalable properties of gold clusters in the size regime in which each atom counts.  相似文献   

4.
We present a joint experimental and theoretical gas phase study of photoabsorption and photofragmentation of silver cluster-biomolecule complexes. We demonstrate on the example of [ Trp.Ag3] + that binding of the metal cluster to a biomolecule leads to a significant enhancement of the photoabsorption in comparison with [Trp.H]+ and [Trp.Ag]+. This enhancement arises due to the coupling between the excitations in the metallic subunit with charge transfer excitations between silver cluster and tryptophan. Our experimental studies show that silver clusters up to eleven atoms can be bound to tryptophan and we present first results on the photofragmentation of the Trp.Ag11 + complex cation, in which properties of cluster subunit remain preserved.  相似文献   

5.
Density functional calculations have been performed for the reactions towards ethylene considering atomic and molecular oxygen loss, oxygen transfer and association reactions. The oxygen transfer channel to ethylene is energetically favourable in contrast to the oxygen loss. This is in agreement with the experimental results [1] which show that does not lose atomic oxygen during the collision induced dissociation at thermal energies. A radical cation mechanism based on structure-reactivity relation of cluster is proposed to explain oxygen transfer channel indicating that this reaction is size selective.  相似文献   

6.
The ab initio molecular dynamics (AIMD) [1] is combined with the heuristic, successive confinement method of surveying a potential energy surface (PES) [2], thereby offering a framework for the simulation study of kinetics and equilibrium properties of metallic clusters. This approach is applied to the study of Au4, a cluster possessing a simple but specific PES, which consists of very shallow and deep basins and due to this presents a challenge to the conventional AIMD methods. Among other things, the probabilities of the transitions between isomers have been found, and on this basis, both the time-dependent and equilibrium populations of the isomers have been calculated for the conditions typical of the NeNePo experiments [3] in the femtosecond pump-probe spectroscopy.  相似文献   

7.
Ultrafast ground state nuclear dynamics of Au4 and Ag4 is theoretically explored in the framework of negative ion - to neutral - to positive ion (NeNePo) pump-probe spectroscopy based on the ab initio Wigner distribution approach. This involves the preparation of a nonequilibrium neutral ensemble by pump induced photodetachment of a thermal anionic ground state distribution, gradient corrected DFT classical trajectory simulations “on the fly” on the neutral ground state, and detection of the relaxation process of the ensemble in the cationic ground state by a time-delayed probe pulse. In Au4, the initially prepared linear structure is close to a local minimum of the neutral state giving rise to characteristic vibrations in the signals for probe wavelength near the initial Franck-Condon transition. A timescale of 1 ps for the structural relaxation towards the stable rhombic D2h neutral isomer was determined by the increase of the signal for probe wavelength in vicinity of the vertical ionization energy of the rhombic structure. In contrast, the relaxation dynamics in Ag4 is characterized by normal mode vibrations since both the initially prepared anionic ground state and the neutral ground state have rhombic minimum geometries. Thus, time-resolved oscillations of pump-probe signals are fingerprints of structural behaviour which can be used experimentally for the identification of particular isomers in the framework of NeNePo spectroscopy. Received 22 December 2000  相似文献   

8.
Ab initio Molecular Dynamics (MD) method, based on density functional theory (DFT) with planewaves and pseudopotentials, was used to study the stability and internal motion in silver cluster Agn, with n =4-6. Calculations on the neutral, cationic and anionic silver dimer Ag2 show that the bond distance and vibrational frequency calculated by DFT are of good quality. Simulations of Ag4, Ag5, and Ag6 in canonical ensemble reveal distinct characteristics and isomerization paths for each cluster. At a temperature of 800 K, an Ag4 has no definite structure due to internal motion, while for Ag5 and Ag6the clusters maintain the planar structure, with atomic rearrangement observed for Ag5 but not for Ag6. At a temperature of 200 K, Ag4 can exist in two planar structures whilst Ag5 is found to be stable only in the planar form. In contrast Ag6 is stable in both planar trigonal and 3D pentagonal structures. Micro-canonical MD simulation was performed for all three clusters to obtain the vibrational density of states (DOS). Received 5 May 1999 and Received in final form 20 August 1999  相似文献   

9.
Molecular dynamics simulations were used to study the initial growth of single-walled carbon nanotubes (SWNTs) on a supported iron cluster (Fe50). Statistical analysis shows that the growth direction of SWNTs becomes more perpendicular to the substrate over time due to the weak interaction between carbon nanotube and the substrate. The diameter of the nanotube also increases with the simulation time and approaches the size of the supported iron cluster.  相似文献   

10.
The laser driven dynamics of the OH(D) stretching vibration in phthalic acid monomethylester is investigated. The combination of a 55-dimensional all-Cartesian reaction surface Hamiltonian and the time-dependent self-consistent field approach is shown to provide a microscopic picture of intramolecular vibrational energy redistribution taking place upon interaction with an external laser field. Choosing suitable zeroth-order vibrational states and combinations thereof a quasi-periodic in-phase and out-of-phase oscillatory behavior is observed manifesting energy flow on different time scales. The fingerprints of this behavior in transient absorption spectroscopy are also discussed. Received 24 August 2000 and Received in final form 11 October 2000  相似文献   

11.
In this communication we analyze the behavior of excited drops that undergo fragmentation. We focus our attention on two scenarios: in the first one the system is free to expand, while in the second one it is confined inside a spherical volume. It is shown that the caloric curve of free expanding systems does not display a vapor branch. In the case of constrained ones, they behave as undergoing a first order phase transition at low densities while as a second order one at high densities. The transition from liquid-like to vapor-like behavior is signaled both by the caloric curves and thermal response functions.  相似文献   

12.
13.
We present the ultrafast multistate nuclear dynamics involving adiabatic and nonadiabatic excited states of non-stoichiometric halide deficient clusters (NanFn-1) characterized by strong ionic bonding and one-excess electron for which the “frozen ionic bonds” approximation has been justified allowing to consider the optical response of the single excess electron in the effective field of the other electrons. We combined the Wigner-Moyal representation of the vibronic density matrix with the ab initio multi state molecular dynamics in the ground and excited electronic states including the nonadiabatic couplings calculated “on the fly” at low computational demand. This method allows the simulation of femtosecond pump-probe and pump-dump signals based on an analytical formulation, which utilizes temperature dependent ground state initial conditions, an ensemble of trajectories carried out on the electronic excited state as well as on the ground state after the passage through the conical intersection in the case of nonadiabatic dynamics and for probing either in the cationic state or in the ground state. The choice of the systems we presented has been made in order to determine the timescales of the fast geometric relaxation leaving the bonding frame intact as during the dynamics in the first excited state of Na4F3, and of the bond breaking processes leading to conical intersection between the first excited state and the ground state as in Na3F2. The former is the smallest finite system prototype for an surface F-center of bulk color centers. The latter allows to study the photo isomerization in full complexity taking into account all degrees of freedom. In the case of Na4F3 after the fast geometric relaxation in the excited state leading to deformed cuboidal structure without breaking of bonds, different types of internal vibrational redistribution (IVR) processes have been identified in pump-dump signals by tuning the dump laser. In contrast, from the analysis of the pump-probe signals of Na3F2 cluster, the timescales for the metallic and the ionic bond breaking, as well as for the passage through conical intersection have been determined. Finally the conditions under which these processes can be experimentally observed have been identified. Received 22 December 2000  相似文献   

14.
The molecular generator coordinate Hartree-Fock method is reviewed. The connection between a quadrature solution of the generator coordinate Hartree-Fock equations and Roothaan's equations is stressed. The relation between linear expansion coefficients and generator coordinate weight functions is discussed and a numerical and analytical example is provided for the 1s orbital of the hydrogen atom represented as the integral transform of a Gaussian function. For the same example, the Gauss-Labatto quadrature is employed to emphasize the implicit integral character of Roothaan's equations. As a major conclusion, the interpretation that every LCAO calculation is actually performing integrations of the Griffin-Wheeler equations is advanced. Basis sets are therefore abscissas of the implicit quadrature used in the integration, whereas the linear coefficients automatically incorporate the corresponding weights. Subsequently, it is shown how to extract the generator coordinate weight function from the LCAO coefficients which has the advantage of being a characteristic of the physical system under study and not of the particular calculation being carried out. As such, basis set design becomes how to efficiently sample the weight function. Received: 13 June 1998 / Received in final form: 12 August 1998 / Accepted: 14 September 1998  相似文献   

15.
Vitamin E models     
The molecular conformations of shortened molecular models of vitamin E (tocopherol and tocotrienol) and their sulfur and selenium congeners were studied computationally at the DFT level of theory [B3LYP/6-31G(d)]. The sequence of stabilization by the various heteroatoms was found to be the following: OSe > S. On the basis of the present structural results it seems that the seleno-congener of vitamin E is a distinct possibility. Received 9 May 2002 / Received in final form 9 July 2002 Published online 13 September 2002  相似文献   

16.
We present a theoretical and computational study of the properties and the response of the nanoplasma and of outer ionization in Xen clusters (n = 55–2171, initial cluster radius R0 = 8.7–31.0 ?) driven by ultraintense near-infrared laser fields (peak intensity IM = 1015–1020 Wcm-2, temporal pulse length τ= 10–100 fs, and frequency ν= 0.35 fs-1). The positively charged high-energy nanoplasma produced by inner ionization nearly follows the oscillations of the fs laser pulse and can either be persistent (at lower intensities of IM = 1015–1016 Wcm-2 and/or for larger cluster sizes, where the electron energy distribution is nearly thermal) or transient (at higher intensities of IM = 1018–1020 Wcm-2 and/or for smaller cluster sizes). The nanoplasma is depleted by outer ionization that was semiquantitatively described by the cluster barrier suppression electrostatic model, which accounts for the cluster size, laser intensity and pulse length dependence of the outer ionization yield. The electrostatic model was further utilized for estimates of the laser intensity and pulse width dependence of the border radius R0 (I) for the attainment of complete outer ionization at , while at R0 > R0 (I) a persistent nanoplasma prevails. R0 (I) establishes an interrelationship between electron dynamics and nuclear Coulomb explosion dynamics in ultraintense laser-cluster interactions.  相似文献   

17.
“Spontaneous alloying” observed by Yasuda, Mori et al. for metallic small clusters is simulated using classical Hamiltonian dynamics. Very rapid alloying occurs homogeneously and cooperatively starting from the solid phase of the cluster if the heat of solution is negative and the size of cluster is less than a critical size. Analysis of 2D models reveals that the alloying rate obeys an Arrhenius-type law, which predicts the alloying time much less than second at room temperature. Evidences manifesting that the spontaneous alloying proceeds in the solid phase without melting are also presented. The simulation reproduces the essential features of the experiments. Received: 2 March 1998 / Revised: 21 May 1998 / Accepted: 28 May 1998  相似文献   

18.
The electronic structure and effective exchange integrals (J ab) between two manganese (III) ions of porphyrin dimer (PPMn(III)–OH–Mn(III)PP) were examined by using unrestricted hybrid DFT (UHDFT) methods. The dependence of Jab on bond angle between two manganese ( Mn–OH–Mn) is also calculated to elucidate orbital overlap effect for Jab value in the system. Natural orbital analysis is performed to explain the overlap effect in terms of the instability of the π, σ and δ orbitals by using diradical character.  相似文献   

19.
20.
Large-scale molecular dynamics simulations with high acceleration energy on a diamond surface were performed in order to investigate the surface erosion process. Accelerated argon or CO2 clusters (∼960 atoms, 100 keV/cluster) impacted on the (111) surface of diamond which consisted of more than 1,000,000 carbon atoms. A typical hemispherical crater appeared about 0.7 ps after the impact, and two or three-layered shockwaves were formed and propagated to certain directions, but the crater was immediately filled up with the fluidized hot carbon material due to the collective elastic recovery before the reflection of the shockwave. The impact energy of the cluster was at first transferred mainly as kinetic energy of the diamond surface in a short time, and the potential energy was activated later. The activated carbon and oxygen atoms from the impact cluster stimulated the evaporation from the diamond surface for the CO2 cluster impact while the evaporation seemed to be suppressed by the argon atoms themselves for the argon cluster impact. Received 22 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号