首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneously acquired microanalytical X‐ray and electron energy loss signals are obtained from a bimetallic core–shell nanoparticle system (FePt@Fe3O4). The signals are decomposed using independent component analysis and the extracted components are used to separately quantify the composition of the spatially overlapping core and shell phases in the nanoheterostructure. The utilization of the complementary strengths of energy dispersive X‐ray and electron energy‐loss spectroscopy microanalysis has enabled the quantification of both light and heavy elements in a single spectrum image acquisition.  相似文献   

2.
To extend the optical property characterization of metal–Cu2O polyhedra, 50 nm Au@Cu cubic cores are used to fabricate Au@Cu–Cu2O core–shell cubes, octahedra, and rhombic dodecahedra with tunable sizes. Despite the unusually large lattice mismatch of 15.1% between Cu and Cu2O, fine adjustment in the volumes of reagents introduced allows the formation of these heterostructures. To relieve the lattice strain, the metal cores are essentially never found to locate at the particle center, and slight lattice spacing shifts are recorded. Although efforts are made to reduce the heterostructure sizes, the Cu2O shells are generally too thick to reveal surface plasmon resonance (SPR) absorption band from the metal cores. Only the Au@Cu–Cu2O cubes with many cores located near the particle corners show observable SPR band red‐shift, but UV–vis spectra of all particle shapes are still dominated by Cu2O absorption and light scattering bands. Au@Cu–Cu2O cubes consistently show the most red‐shifted absorption bands than those of octahedra resulting from the optical facet effects.  相似文献   

3.
4.
Au nanoparticle (AuNP) core particles coated with a poly(N‐isopropylacrylamide) (pNIPAm) shell (Au@pNIPAm) are synthesized by seed mediated free radical polymerization. Subsequently, a temperature–light‐responsive photonic device is fabricated by sandwiching the Au@pNIPAm particles between two thin layers of Au. The optical device exhibits visual color and characteristic multipeak reflectance spectra, where peak position is primarily determined by the distance between two Au layers. Dual responsivities of the photonic device are achieved by combining the photothermal effect of AuNPs core (localized surface plasmon resonance (LSPR) effect) and the temperature responsivity of the pNIPAm shell. That is, the pNIPAm shell collapses as the temperature is increased above pNIPAm's lower critical solution temperature, either by direct heat input or heat generated by AuNPs' LSPR effect. To investigate the effect of AuNPs distribution in the microgels on the devices' photothermal responsivity, the Au@pNIPAm microgel‐based etalon devices are compared with that fabricated by AuNP‐doped pNIPAm‐based microgels; in terms of response kinetics and optical spectrum homogeneity. The uniform Au@pNIPAm microgel‐based devices show a fast response and exhibit a comparatively homogeneous spectrum over the whole slide. These materials can potentially find use in drug delivery systems, active optics, and soft robotics.  相似文献   

5.
The challenges of nanoparticles, such as size‐dependent toxicity, nonbiocompatibility, or inability to undergo functionalization for drug conjugation, limit their biomedical application in more than one domain. Oval‐shaped iron@gold core–shell (oFe@Au) magnetic nanoparticles are engineered and their applications in magnetic resonance imaging (MRI), optical coherence tomography (OCT), and controlled drug release, are explored via photo stimulation‐generated hyperthermia. The oFe@Au nanoparticles have a size of 42.57 ± 5.99 nm and consist of 10.76 and 89.24 atomic % of Fe and Au, respectively. Upon photo‐stimulation for 10 and 15 minutes, the levels of cancer cell death induced by methotrexate‐conjugated oFe@Au nanoparticles are sixfold and fourfold higher, respectively, than oFe@Au nanoparticles alone. MRI and OCT confirm the application of these nanoparticles as a contrast agent. Finally, results of in vivo experiments reveal that the temperature is elevated by 13.2 °C, when oFe@Au nanoparticles are irradiated with a 167 mW cm?2 808 nm laser, which results in a significant reduction in tumor volume and scab formation after 7 days, followed by complete disappearance after 14 days. The ability of these nanoparticles to generate heat upon photo‐stimulation also opens new doors for studying hyperthermia‐mediated controlled drug release for cancer therapy. Applications include biomedical engineering, cancer therapy, and theranostics fields.  相似文献   

6.
Imaging guided combined therapy has attracted great attention in recent years. This study develops core–shell Au@FeS nanoparticles with polyethylene glycol (PEG) coating as multifunctional nanotheranostic agent for tumor imaging and combined photothermal therapy (PTT) and radiotherapy (RT). In this Au@FeS nanostructure, the gold core can act as a radiosensitizer for enhanced RT, while FeS shell offers contrast for T2‐weighted magnetic resonance imaging and endows the nanoparticles with strong high near‐infrared (NIR) for photoacoustic imaging and PTT. As demonstrated by both in vitro and in vivo experiments, Au@FeS‐PEG can act as excellent therapeutic agent for cancer synergistic treatment. More importantly, mild PTT boosts the blood flow into tumor and increases oxygenation to overcome the tumor hypoxia microenvironment, further enhancing the efficacy of RT. Moreover, Au@FeS‐PEG induces on obvious toxicity at a high dose (20 mg kg?1) to the treated mice as evidenced by blood biochemistry. Therefore, this study brings an excellent strategy for cancer enhanced RT through NIR‐triggered mild PTT to overcome hypoxia‐associated radioresistance.  相似文献   

7.
Most recently, much attention has been devoted to photocatalytic materials that may help to solve the global energy crisis and may provide environmental protection. Herein, novel cocatalysts based on few layered MoS2 and TiO2 nanomaterials have been designed by growing MoS2 nanosheets on the surface of TiO2 nanospheres through a facile hydrothermal method. The method allows the formation of TiO2/MoS2 core–shell heterostructures of uniform morphologies and stable structure and provides a good control over shell thickness. The mechanism that forms these heterostructures is discussed in detail. In addition, as cocatalyst, MoS2 nanosheets can enlarge the light harvesting window to include visible light and improve the photocatalytic ability of TiO2. Using Rhodamine B as the model, the resultant heterostructure is demonstrated to possess excellent and stable photocatalytic activity in the degradation of organic pollutants under visible light illumination. The TiO2/MoS2 heterostructures possess this catalytic activity due to their large surface area and their excellent interface for separating holes and electrons. Therefore, this novel heterostructure nanomaterials possess potential applications in water treatment, degradation of dye pollutants, and environmental cleaning.  相似文献   

8.
Core–shell nanoparticles are known to form in binary systems using a one‐step gas‐condensation deposition process where a large, positive enthalpy of mixing provides the driving force for phase separation and a difference in surface energy between component atoms creates a preferential surface phase leading to a core–shell structure. Here, core–shell nanoparticles have been observed in systems with enthalpy as low as ?5 kJ mol?1 and a surface energy difference of 0.5 J m?2 (Mo–Co). This suggests that surface energy dominates at the nanoscale and can lead to phase separation in nanoparticles. The compositions and size dependence of the core–shell structures are also compared and no core–shell structures are observed below a critical size of 8 nm.  相似文献   

9.
A scalable synthesis of magnetic core–shell nanocomposite particles, acting as a novel class of magnetic resonance (MR) contrast agents, has been developed. Each nanocomposite particle consists of a biocompatible chitosan shell and a poly(methyl methacrylate) (PMMA) core where multiple aggregated γ‐Fe2O3 nanoparticles are confined within the hydrophobic core. Properties of the nanocomposite particles including their chemical structure, particle size, size distribution, and morphology, as well as crystallinity of the magnetic nanoparticles and magnetic properties were systematically characterized. Their potential application as an MR contrast agent has been evaluated. Results show that the nanocomposite particles have good stability in biological media and very low cytotoxicity in both L929 mouse fibroblasts (normal cells) and HeLa cells (cervical cancer cells). They also exhibited excellent MR imaging performance with a T2 relaxivity of up to 364 mMFe?1 s?1. An in vivo MR test performed on a naked mouse bearing breast tumor indicates that the nanocomposite particles can localize in both normal liver and tumor tissues. These results suggest that the magnetic core–shell nanocomposite particles are an efficient, inexpensive and safe T2‐weighted MR contrast agent for both liver and tumor MR imaging in cancer therapy.  相似文献   

10.
Core–shell bimetallic Au@Ni nanoparticles, with gold cores and thin nickel shells with overall size less than 10 nm, are synthesized and stabilized in pure cubic (fcc) and hexagonal (hcp) phase. Due to their unique crystal, electronic, and geometric structure, they show interesting magnetic and chemical properties. The Au@Nifcc is magnetic, whereas Au@Nihcp is non‐magnetic. Both the bimetallic nanostructures are stable to surface oxidation until 150 °C and show excellent catalytic activity for p‐nitrophenol reduction reaction.  相似文献   

11.
Metallic crystalline/amorphous core–shell nanoparticles consisting of a crystalline Pd core (c‐Pd) surrounded by an amorphous Fe25Sc75 shell (a‐FeSc) are prepared by inert‐gas condensation. A phase transformation of the c‐Pd by a solid‐state diffusion process resulting in an amorphous core (a‐PdSc) surrounded by an amorphous FeSc shell is observed if the core–shell structure is irradiated at ambient temperature with 300 keV electrons. The amorphization process seems to involve the diffusion of irradiation‐induced defects and is presumably driven by the large negative heat of mixing of Pd and Sc, as well as by the excess enthalpy of the interfaces between the c‐Pd regions and the surrounding a‐FeSc. The structural transformation reported here opens a new way to producing metallic amorphous core–shell nanoparticles of different chemical compositions and probably novel properties.  相似文献   

12.
Surface‐enhanced Raman scattering from carbon nanotube bundles adsorbed with plasmon‐tunable Ag‐core Au‐shell nanoparticles (Ag@Au nps) was carried out for the first time. By utilizing nanoparticles whose plasmon resonance peak (541, 642 nm) closely matches the commonly used Raman excitation sources (532, 632.81 nm), we can observe a large enhancement in the Raman signatures of carbon nanotubes. We obtain greater enhancement in the Raman signal for the above case when compared to nanotubes adsorbed with conventional Ag, Au or other ‘off resonant’ Ag@Au nps. The power‐dependent SERS experiment on single‐walled nanotubes (SWNTs) with resonant Ag@Au nps reveals a linear behavior between the G‐band intensity and the photon flux density, which is in agreement with the vibrational pumping model of SERS. The observed enhancement by resonance matching is pronounced for carbon nanotubes and may lead to insights into understanding nanotube–nanoparticle interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Due to their high spatial resolution and precise application of force, optical traps are widely used to study the mechanics of biomolecules and biopolymers at the single‐molecule level. Recently, core–shell particles with optical properties that enhance their trapping ability represent promising candidates for high‐force experiments. To fully harness their properties, methods for functionalizing these particles with biocompatible handles are required. Here, a straightforward synthesis is provided for producing functional titania core–shell microparticles with proteins and nucleic acids by adding a silane–thiol chemical group to the shell surface. These particles display higher trap stiffness compared to conventional plastic beads featured in optical tweezers experiments. These core–shell microparticles are also utilized in biophysical assays such as amyloid fiber pulling and actin rupturing to demonstrate their high‐force applications. It is anticipated that the functionalized core–shells can be used to probe the mechanics of stable proteins structures that are inaccessible using current trapping techniques.  相似文献   

14.
We present a study of resonant optical properties of gold‐protected silver nanoisland films. Silver nanoislands were grown on a glass substrate using out‐diffusion technique, the growth was followed by the deposition of nanometer‐thick gold coatings. Scanning electron microscopy and optical spectroscopy were used to characterize morphology and extinction spectra of the grown combined silver–gold nanostructures. Micro Raman spectroscopy of the combined nanoislands has demonstrated their signal enhancement factor exceeding that one of the initial silver nanoislands.  相似文献   

15.
Spinel ferrites hold great promise as attractive electrode materials for high‐performance supercapacitors owing to their multiple valence states and abundant choice of metal cation. However, the main bottleneck for most of the currently reported spinel ferrite‐based electrodes is relatively low specific capacitance. Herein, a new kind of lithium ferrites (Li0.5Fe2.5O4, LFO)@polydopamine (PDA) (denoted as LFO@PDA) core–shell nanoparticles with extraordinary capacitive performance as negative electrodes for aqueous asymmetric supercapacitors (ASCs) are reported first. Taking advantage of increased active sites, improved conductivity, enhanced hydrophilicity, and good strain accommodation in terms of the interesting core–shell architecture and PDA shell, the as‐obtained LFO@PDA electrode reaches a remarkable capacitance of 276.4 F g−1 and prominent durability (no any capacitance loss after 15 000 cycles). Moreover, a robust aqueous 1.8 V‐ASC device with a preferable energy density of 33.9 Wh kg−1 is also achieved based on the LFO@PDA electrode as negative electrode.  相似文献   

16.
The tendency to the miniaturization of devices and the peculiar properties of the nanoparticles have raised the interest of the scientific community in nanoscience. In particular, those systems consisting of nanoparticles dispersed in fluids, known as nanofluids, have made it possible to overcome many technological and scientific challenges, as they show extraordinary properties. In this work, the loss of the spectral stability in heterogeneous luminescent nanofluids is studied revealing the critical role played by the exchange of ions between different nanoparticles. Such ion exchange is favored by changes in the molecular properties of the solvent, making heterogeneous luminescent nanofluids highly unstable against temperature changes. This work demonstrates how both temporal and thermal stabilities of heterogeneous luminescent nanofluids can be substantially improved by core–shell engineering. This simultaneously avoids the leakage of luminescent ions and the effects of the solvent molecular changes.  相似文献   

17.
Conversion of CO2 gas to CO fuels is one of the most promising solutions for the increasing threat of global warming and energy crisis. The efficient catalyst Ni–Au dumbbell converting CO2 into CO at elevated temperatures has high CO product selectivity; however, the accompanied atomic diffusion and subsequent surface reconstruction affect the catalytic efficiency of chemical reaction. Atomic scale characterization of structural evolution of the catalyst, which is essential to correlate the functional mechanism to active catalyst surfaces, is yet to be studied. Here, in situ transmission electron microscopy experiments and atomistic simulations are performed to characterize the structural evolution of Ni–Au dumbbell nanoparticles under two different external stimuli. In the condition of high temperature and vacuum, the Ni–Au nanostructure reveals a clear shape reconstruction from the initial dumbbell to core–shell‐like, which is induced by capillary force to minimize free surface energy of the system. The shape transformation involves two stages of processes, initial fast Au diffusion followed by slow source‐controlled diffusion. At ambient temperature, the combination of CO2 and electron flux surprisingly induces analogous structural transformation of Ni–Au nanostructure, where the associated chemical reaction and CO absorption stimulate the Au migration on Ni surface. Such surface reconstruction can be widely present in catalytic reactions in different environmental conditions, and the results herein demonstrate the detailed processes of Ni–Au structure evolution, which provide important insights for understanding the catalyst performance.  相似文献   

18.
Large‐scale and tunable synthesis of FeCo/graphitic carbon (FeCo/GC) core–shell nanoparticles as a promising material for multipurpose biomedical applications is reported. The high‐quality graphitic structure of the carbon shells is demonstrated through high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and Raman spectroscopy. A saturation magnetization of 80.2 emu g?1 is reached for the pure FeCo/GC core–shell nanoparticles. A decrease in the saturation magnetization of the samples is observed with an increase in their carbon content with different carbon morphologies evolved in the process. It is also shown how hybrid nanostructures, including mixtures of the FeCo/GC nanoparticles and multi‐walled carbon nanotubes (MWNTs) or carbon nanorods (CNRs), can be obtained only by manipulation of the carbon‐bearing gas flow rate.  相似文献   

19.
采用分子束外延法制备不同密度的银纳米粒子(AgNPs)修饰的局域表面等离子体共振增强n-ZnO/iZnO/MgO/p-GaN异质结发光二极管(LEDs),并对其电学及光学性质进行表征。结果显示:LEDs中引入适当浓度的AgNPs有利于AgNPs局域表面等离子体激元与ZnO激子相耦合,可以显著提高器件的电致发光性能;随着AgNPs浓度的增加,LEDs发光增强倍数先增大后减小,分析认为这是AgNPs局域表面等离子体共振耦合增强过程和AgNPs的消光过程两者之间相互博弈而导致的结果。  相似文献   

20.
Improving nanomaterial imaging contrast is critical for disease diagnosis and treatment monitoring. Designing activatable imaging agents has the extra benefit of improving signal‐to‐background ratios, as well as reporting local environmental cues. MnO2, sensitive to local pH and redox state, is used to modulate the tumor microenvironment and can serve as a potential activatable magnetic resonance imaging (MRI) agent. However, the intrinsic 2D form may limit their applications in nanomedicine. Here, a novel facile aqueous route to synthesize MnO2 nanoshells on various core nanomaterials, regardless of their chemical nature and morphology, is reported. Cationic polyelectrolyte is discovered to be the key to obtain a universal method of coatingMnO2 on nanomaterials. Taking Cu2−xSe@MnO2 as an example, a remarkable three times enhanced T1‐MRI contrast in a tumor reducing environment is demonstrated. Combined with large optical absorbance of inner Cu2−xSe cores, they can be applied for efficient redox‐activated MRI‐guided photothermal therapy in the NIR‐II window in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号