首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic delivery of therapeutic nucleic acids to target cells and tissues outside of the liver remains a major challenge. A biomimetic high‐density lipoprotein nanoparticle (HDL NP) is synthesized for delivery of a cholesteryl‐modified therapeutic nucleic acid to vascular endothelial cells (ECs), a cell type naturally targeted by HDL. HDL NPs adsorb cholesteryl‐modified oligonucleotides and protect them from nuclease degradation. As proof of principle, we deliver RNAi targeting vascular endothelial growth factor receptor 2 (VEGFR2) to ECs to effectively silence target mRNA and protein expression in vitro. In addition, data show that treatment strongly attenuates in vivo neovascularization measured using a standard angiogenesis assay and in hypervascular tumor allografts where a striking reduction in tumor growth is observed. For effective delivery, HDL NPs require the expression of the cell surface protein scavenger receptor type‐B1 (SR‐B1). No toxicity of HDL NPs is measured in vitro or after in vivo administration. Thus, by using a biomimetic approach to nucleic acid delivery, data demonstrate that systemically administered RNAi–HDL NPs target SR‐B1 expressing ECs to deliver functional anti‐angiogenic RNAi as a potential treatment of cancer and other neovascular diseases.  相似文献   

2.
Targeted drug delivery using epidermal growth factor peptide‐targeted gold nanoparticles (EGFpep‐Au NPs) is investigated as a novel approach for delivery of photodynamic therapy (PDT) agents, specifically Pc 4, to cancer. In vitro studies of PDT show that EGFpep‐Au NP‐Pc 4 is twofold better at killing tumor cells than free Pc 4 after increasing localization in early endosomes. In vivo studies show that targeting with EGFpep‐Au NP‐Pc 4 improves accumulation of fluorescence of Pc 4 in subcutaneous tumors by greater than threefold compared with untargeted Au NPs. Targeted drug delivery and treatment success can be imaged via the intrinsic fluorescence of the PDT drug Pc 4. Using Pc 4 fluorescence, it is demonstrated in vivo that EGFpep‐Au NP‐Pc 4 impacts biodistribution of the NPs by decreasing the initial uptake by the reticuloendothelial system (RES) and by increasing the amount of Au NPs circulating in the blood 4 h after IV injection. Interestingly, in vivo PDT with EGFpep‐Au NP‐Pc 4 results in interrupted tumor growth when compared with EGFpep‐Au NP control mice when selectively activated with light. These data demonstrate that EGFpep‐Au NP‐Pc 4 utilizes cancer‐specific biomarkers to improve drug delivery and therapeutic efficacy over untargeted drug delivery.  相似文献   

3.
Imaging guided combined therapy has attracted great attention in recent years. This study develops core–shell Au@FeS nanoparticles with polyethylene glycol (PEG) coating as multifunctional nanotheranostic agent for tumor imaging and combined photothermal therapy (PTT) and radiotherapy (RT). In this Au@FeS nanostructure, the gold core can act as a radiosensitizer for enhanced RT, while FeS shell offers contrast for T2‐weighted magnetic resonance imaging and endows the nanoparticles with strong high near‐infrared (NIR) for photoacoustic imaging and PTT. As demonstrated by both in vitro and in vivo experiments, Au@FeS‐PEG can act as excellent therapeutic agent for cancer synergistic treatment. More importantly, mild PTT boosts the blood flow into tumor and increases oxygenation to overcome the tumor hypoxia microenvironment, further enhancing the efficacy of RT. Moreover, Au@FeS‐PEG induces on obvious toxicity at a high dose (20 mg kg?1) to the treated mice as evidenced by blood biochemistry. Therefore, this study brings an excellent strategy for cancer enhanced RT through NIR‐triggered mild PTT to overcome hypoxia‐associated radioresistance.  相似文献   

4.
Combination of different therapeutic strategies to treat cancer has attracted tremendous attention in recent years. Herein, the authors develop polydopamine (PDA) nanoparticles with polyethylene glycol (PEG) modification as a multifunctional nanocarrier for coloading photosensitizer chlorine6 (Ce6) and curcumin (Cur) for combined photodynamic therapy (PDT) and radiotherapy (RT) of cancer. PEGylated PDA nanoparticles (PDA‐PEG) exhibit well water soluble and biocompatible in different physiological solutions and cause no obvious toxicity to cancer cells. In this nanoparticle, the loaded Ce6 can trigger the generation of single oxygen under near‐infrared laser irradiation for PDT, while the loaded Cur can act as an excellent radiosensitizer under X‐ray irradiation for enhanced external RT. As demonstrated by in vitro and in vivo therapeutic efficiency, combined PDT and RT based on PDA‐PEG/Cur/Ce6 nanoparticles exhibits significant inhibition the growth of cancer cells, revealing perfect performance in cancer treatment. Therefore, the study not only presents a polymer‐based theranostic platform for cancer treatment but also demonstrates the potential applications of combined RT and PDT for the future clinic cancer therapy.  相似文献   

5.
A dendritic amphiphilic block copolymer H40‐poly(d,l ‐lactide)‐block‐d‐α‐tocopheryl polyethylene glycol 1000 succinate (H40‐PLA‐b‐TPGS) is synthesized, which is then employed to develop a system of nanoparticles (NPs) loaded with docetaxel (DTX) as a model drug for cancer treatment due to its higher drug‐loading content and drug encapsulation efficiency, smaller particle size, faster drug release, and higher cellular uptake in comparison to the linear PLA polymer NPs and PLA‐b‐TPGS copolymer NPs. The drug‐loaded NPs are prepared by a modified nanoprecipitation method and characterized in terms of size and size distribution, surface morphology, drug release profile, and physical state of DTX. Cellular uptake of coumarin 6‐loaded NPs by MCF‐7 cancer cells is determined by flow cytometry and confocal laser scanning microscopy. The antitumor efficacy of the drug‐loaded NPs is investigated in vitro by MTT assay and in vivo by xenograft tumor model. The 72 h IC50 of the drug formulated in the PLA, PLA‐b‐TPGS, and H40‐PLA‐b‐TPGS NPs is found to be, 1.5 ± 0.3, 0.9 ± 0.1, and 0.15 ± 0.06 μg mL?1, which are 7.3, 12.2, and 73.3‐fold effective than 11.0 ± 1.2 μg mL?1 for Taxotere, respectively. Such advantages are further confirmed by the measurement of the tumor size and weight.  相似文献   

6.
This work reports an efficient and straightforward strategy to fabricate hybrid microsized containers with reduction‐sensitive and ultrasound‐responsive properties. The ultrasound and reductive sensitivity are visualized using scanning electron microscopy, with the results showing structural decomposition upon ultrasound irradiation and in the presence of reducing agent. The ultrasound‐responsive functionalities of hybrid carriers can be used as external trigger for rapid controlled release, while prolonged drug release can be achieved in the presence of reducing agent. To evaluate the potential for targeted drug delivery, hybrid microsized containers are loaded with the anticancer drug doxorubicin (Dox). Such hybrid capsules can undergo structural intracellular degradation after cellular uptake by human cervical cancer cell line (HeLa), resulting in Dox release into cancer cells. In contrast, there is no Dox release when hybrid capsules are incubated with human mesenchymal stem cells (MSCs) as an example of normal human cells. The cell viability results indicate that Dox‐loaded capsules effectively killed HeLa cells, while they have lower cytotoxicity against MSCs as an example of healthy cells. Thus, the newly developed intracellular‐ and ultrasound‐responsive microcarriers obtained via sol‐gel method and layer‐by‐layer technique provide a high therapeutic efficacy for cancer, while minimizing adverse side effect.  相似文献   

7.
Development of multifunctional nanoprobes for tumor diagnosis is extremely important in the field of molecular imaging. In this study, the facile synthesis of lactobionic acid (LA)‐targeted superparamagnetic iron oxide (Fe3O4) nanoparticles (NPs) with ultrahigh relaxivity for targeted magnetic resonance (MR) imaging of an orthotopic hepatocellular carcinoma (HCC) is reported. Polyethyleneimine (PEI)‐stabilized Fe3O4 NPs prepared via a mild reduction route are sequentially coupled with fluorescein isothiocyanate and polyethylene glycol‐LA (LA‐PEG‐COOH) segment, followed by acetylation of the remaining PEI surface amines. The formed LA‐targeted Fe3O4 NPs are thoroughly characterized. It is shown that the developed multifunctional LA‐targeted Fe3O4 NPs are colloidally stable and water‐dispersible, display an ultrahigh r 2 relaxivity (579.89 × 10?3 m ?1 s?1) and excellent hemocompatibility and cytocompatibility in the given concentration range, and can target HepG2 cells overexpressing asialoglycoprotein receptors as confirmed by in vitro cellular uptake assay, flow cytometry, and confocal microscopy. Most strikingly, the developed multifunctional LA‐targeted Fe3O4 NPs can be used as a nanoprobe for targeted MR imaging of HepG2 cells in vitro and an orthotopic tumor model of HCC in vivo. With the ultrahigh r 2 relaxivity and the versatile PEI amine‐mediated conjugation chemistry, a range of different Fe3O4 NP‐based nanoprobes may be developed for theranostics of different types of cancer.  相似文献   

8.
A diagnosis and therapeutic strategy for gastric cancer is developed herein by combining thermosensitive liposomal (TSL)‐based photothermal/photodynamics therapy (PTT/PDT) with chemotherapy and adjuvant immunotherapy. IR820, a photothermal agent, paclitaxel (PTX), an antitumor drug, and imiquimod (R837), a Toll‐like‐receptor‐7 agonist, are coencapsulated into a TSL drug delivery system. These formed PTX‐R837‐IR820@TSL complexes exhibit excellent optical properties, good dispersibility, and stability. Under NIR light irradiation, the measurement of singlet oxygen production and thermal efficiency indicate promising potential of PTX‐R837‐IR820@TSL complexes for PTT and PDT. Confocal microscopy and small animal NIR imaging demonstrate tumor targeting ability of the liposomal complexes to gastric cancer cells. In vitro cell viability assays and in vivo animal experiments show prominent antitumor efficiency of PTX‐R837‐IR820@TSL complexes upon NIR light irradiation. This excellent therapeutic efficacy is attributed to the simultaneous chemotherapy and PTT/PDT. Furthermore, the liposomal complexes under NIR irradiation would ablate tumors to generate a pool of tumor‐associated antigens, which is able to promote strong antitumor immune responses in the presence of those R837‐containing liposomal complexes acted as adjuvant. These results indicate that the multifunctional liposomal complexes could realize a remarkable synergistic therapeutic outcome in gastric carcinoma.  相似文献   

9.
Recent studies have revealed the existence of liver cancer stem cells (CSCs). Therefore, there is an urgent need for new and effective treatment strategies specific to liver CSCs. In this work, the poly(d,l-lactide-coglycolide) nanoparticles containing paclitaxel were prepared by emulsification-solvent evaporation method. The nanoparticles decorated with anti-CD133 antibody, termed targeted nanoparticles, were prepared by carbodiimide chemistry for liver CSCs. The physicochemical characteristics of the nanoparticles (i.e., encapsulation efficiency, particle size distribution, morphology, and in vitro release) were investigated. Cellular uptake and accumulation in tumor tissue of nanoparticles were observed. To assess anti-tumor activity of nanoparticles in vitro and in vivo, cell survival assay and tumor regression study were carried out using liver cancer cell lines (Huh7 and HepG2) and their xenografts. Particle size of targeted nanoparticles was 429.26 ± 41.53 nm with zeta potential of ?11.2 mV. Targeted nanoparticles possessed spherical morphology and high encapsulation efficiency (87.53 ± 5.9 %). The accumulation of targeted nanoparticles depends on dual effects of passive and active targeting. Drug-loaded nanoparticles showed cytotoxicity on the tumor cells in vitro and in vivo. Targeted nanoparticles resulted in significant improvement in therapeutic response through selectively eliminating CD133 positive subpopulation. These results suggested that the novel nanoparticles could be a promising candidate with excellent therapeutic efficacy for targeting liver CSCs.  相似文献   

10.
A novel drug carrier is presented consisting of plasmonic hollow gold nanoshells (HGN) chemically tethered to liposomes made temperature sensitive with lysolipids (TSL). Continuous‐wave irradiation by physiologically friendly near‐infra‐red light at 800 nm for 2.5 min at laser intensities an order of magnitude below that known to damage skin generates heating localized to the liposome membrane. The heating increases the liposome permeability in an irradiation dose dependent, but reversible manner, resulting in rapid release of small molecules such as the self‐quenching dye carboxyfluorescein or the chemotherapeutic doxorubicin, without raising the bulk temperature. The local rise in nanoshell temperature under laser irradiation is inferred by comparing dye release rates from the TSL via bulk heating to that induced by irradiation. Laser‐irradiation of TSL enables precise control of contents release with low temperature gradients confined to areas irradiated by the laser focus. The combined effects of rapid local release and localized hyperthermia provide a synergistic effect as shown by a near doubling of androgen resistant PPC‐1 prostate cancer cell toxicity compared to the same concentration of free doxorubicin.  相似文献   

11.
In this work, a specific tumor‐targeted small molecular fluorophore for synchronous long‐duration cancer imaging, photodynamic therapy, and photothermal therapy is synthesized. This novel fluorophore exhibits specific targeting ability in certain tumors (U87MG, MDA‐MB‐231, A549, etc.) based on its inherent structure and efficiently generates local hyperthermia and reactive oxygen species simultaneously for imaging‐guided precise cancer therapy combining the photothermic and photodynamic effects under laser irradiation. Meanwhile, compared to traditional near infrared fluorophore, this novel fluorophore with significantly enhanced stability against photobleaching can prolong the time of tumor imaging and improve the phototherapy efficiency. This work presents a potential strategy to develop small‐molecule‐based cancer theranostic agents for simultaneous cancer targeting, imaging, and therapy.  相似文献   

12.
Nonspecific high‐energy radiation for treatment of metastatic ovarian cancer is limited by damage to healthy organs, which can be mitigated by the use of radiosensitizers and image‐guided radiotherapy. Gold (Au) and tantalum oxide (TaOx) nanoparticles (NPs), by virtue of their high atomic numbers, find utility in the design of bimetallic NP systems capable of high‐contrast computed tomography (CT) imaging as well as a potential radiosensitizing effect. These two radio‐dense metals are integrated into dendritic mesoporous silica NPs (dMSNs) with radial porous channels for high surface‐area loading of therapeutic agents. This approach results in stable, monodispersed dMSNs with a uniform distribution of Au on the surface and TaOx in the core that exhibits CT attenuation up to seven times greater than iodine or monometallic dMSNs without either TaOx or Au. Tumor targeting is assessed in a metastatic ovarian cancer mouse model. Ex vivo micro‐CT imaging of collected tumors shows that these NPs not only accumulate at tumor sites but also penetrate inside tumor tissues. This study demonstrates that after intraperitoneal administration, rationally designed bimetallic NPs can simultaneously serve as targeted contrast agents for imaging tumors and to enhance radiation therapy in metastatic ovarian cancer.  相似文献   

13.
A combinatorial treatment comprising thermal therapy and chemotherapy offers synergistic effects by inducing localized heat to targeted tumor sites and simultaneously delivering anticancer drugs to minimize systemic side effects and enhance the cytotoxic effect. In this study, a novel platform is developed for combining photothermal therapy and chemotherapy using drug‐conjugated gold nanorods (GNRs). Camptothecin (CPT), a model anticancer drug, is chemically conjugated onto GNRs through hydrolytic ester bonding. Upon near‐infrared (NIR) irradiation, localized heat from GNRs in target areas starts to destroy tissues and cells via photothermal therapy, and the elevated temperature accelerates hydrolysis of ester linkage, rapidly releasing drugs for chemotherapy. This combined NIR triggered thermal therapy and chemotherapy with CPT‐functionalized GNRs (CPT‐GNRs) presents a synergistic effect that has high efficacy in in vitro tests, thus providing a robust platform for efficient cancer treatments.  相似文献   

14.
The challenges of nanoparticles, such as size‐dependent toxicity, nonbiocompatibility, or inability to undergo functionalization for drug conjugation, limit their biomedical application in more than one domain. Oval‐shaped iron@gold core–shell (oFe@Au) magnetic nanoparticles are engineered and their applications in magnetic resonance imaging (MRI), optical coherence tomography (OCT), and controlled drug release, are explored via photo stimulation‐generated hyperthermia. The oFe@Au nanoparticles have a size of 42.57 ± 5.99 nm and consist of 10.76 and 89.24 atomic % of Fe and Au, respectively. Upon photo‐stimulation for 10 and 15 minutes, the levels of cancer cell death induced by methotrexate‐conjugated oFe@Au nanoparticles are sixfold and fourfold higher, respectively, than oFe@Au nanoparticles alone. MRI and OCT confirm the application of these nanoparticles as a contrast agent. Finally, results of in vivo experiments reveal that the temperature is elevated by 13.2 °C, when oFe@Au nanoparticles are irradiated with a 167 mW cm?2 808 nm laser, which results in a significant reduction in tumor volume and scab formation after 7 days, followed by complete disappearance after 14 days. The ability of these nanoparticles to generate heat upon photo‐stimulation also opens new doors for studying hyperthermia‐mediated controlled drug release for cancer therapy. Applications include biomedical engineering, cancer therapy, and theranostics fields.  相似文献   

15.
Monodispersed bioactive glass nanoparticles (BGNs) have received much attention in various biomedical applications such as tissue regeneration, drug/gene delivery, bioimaging, and cancer therapy. However, the poor dispersion stability of BGNs in a physiological environment has limited their wide biomedical applications. The long‐term in vitro/in vivo toxicity and biodegradation of BGNs are also not clear. Monodispersed glycerolphosphate‐functionalized BGNs (GP‐BGN) are synthesized and their stability under physiological environment in vitro, and long‐term biodegradation behavior in vitro and in vivo are investigated herein. GP‐BGN shows significantly enhanced particles stability in physiological environment, good hemocompatibility and cellular biocompatibility, as well as high cellular uptake ability. GP‐BGN also exhibits long‐term biodegradation behavior in vitro/in vivo and negligible biotoxicity (tissue and blood toxicity). This study demonstrates that monodispersed surface‐functionalized BGNs could be used as biocompatible and biodegradable nanomaterials for long‐term safe bioimaging and disease therapy.  相似文献   

16.
Multifunctional nanoparticles for selectively targeting tumor cells and effectively delivering multiple drugs are urgently needed in cancer therapy. Here, a dual‐drug delivery system is prepared, based on functionalized hollow mesoporous silica nanoparticles (HMSNs). Doxorubicin (DOX) hydrochloride is loaded into the hollow core, and dichloro(1,2‐diaminocyclohexane)platinum (II) (DACHPt) is stored in the pores of the shell by the coordination interaction with the carboxyl groups modified on the pore walls, which also serves as barriers to control the DOX release. Detailed studies in vitro indicate that the DACHPt release is triggered by Cl? through the cleavage of the coordination interaction, and the DOX release depends on the release rate of DACHPt and the environmental pH value. The surface of the mechanized nanoparticles is also modified by transferrin (Tf) to achieve the tumor specificity. Compared with individual drug delivery systems, the dual‐drug delivery system shows synergistic efficacy on the cell cytotoxicity (combination index = 0.30), resulting in improved tumor cell killing. The present dual‐drug delivery system provides a promising strategy to develop controlled and targeted combination therapies for efficient cancer treatment.  相似文献   

17.
Photothermal therapy (PTT) is an emerging noninvasive and precise localized therapeutic modality; however, it is deeply limited by its poor tumor accumulation, inadequate photothermal conversion efficiency, and the thermoresistance of cancer cells. Aimed at these shortcomings, tumor‐targeting nanoparticles (iRGD‐W18O49‐17AAG) comprising carboxyl‐group‐functionalized W18O49 nanoparticles, integrin‐targeting peptide iRGD, and HSP90‐inhibitor 17AAG are developed. The W18O49 nanoparticles act as excellent PTT carriers and computed tomography (CT) imaging contrast agents. The ring type polypeptide iRGD promotes the accumulation of nanoparticles in the tumour and further penetration into cancer cells. The introduction of 17AAG can inhibit the heat‐shock response and overcome the thermoresistance, thus increasing the curative effect of PTT and reducing the chance of tumor recurrence. The W18O49 nanoparticles can also be used to monitor and guide the phototherapeutic through CT and near‐infrared fluorescence imaging after modification with Cy5.5. In addition, superior biosafety is also indicated in both preliminary in vitro and in vivo assessments. The potential of iRGD‐W18O49‐17AAG in tumor targeting, dual modality imaging‐guided and remarkable enhanced PTT of gastric cancer with ignorable side effect both in vitro and in vivo, which may be further applied in clinic, is highlighted.  相似文献   

18.
We have explored the potential of deep Raman spectroscopy, specifically surface‐enhanced spatially offset Raman spectroscopy (SESORS), for non‐invasive detection from within animal tissue, by employing SERS‐barcoded nanoparticle (NP) assemblies as the diagnostic agent. This concept has been experimentally verified in a clinically‐relevant backscattered Raman system with an excitation line of 785 nm under ex vivo conditions. We have shown that our SORS system, with a fixed offset of 2–3 mm, offered sensitive probing of injected 2‐quinolinethiol‐barcoded NP assemblies through animal tissue containing both protein and lipid. In comparison with that of non‐aggregated SERS‐barcoded gold NPs, we have demonstrated that the tailored SERS‐barcoded aggregated NP assemblies have significantly higher detection sensitivity. We report that these NP assemblies can be readily detected at depths of 7–8 mm from within animal proteinaceous tissue with high signal‐to‐noise ratio. In addition, they could also be detected from beneath 1–2 mm of animal tissue with high lipid content, which generally poses a challenge because of high absorption of lipids in the near‐infrared region. We have also shown that the signal intensity and signal‐to‐noise ratio at a particular depth is a function of the SERS tag concentration used and that our SORS system has a 2‐quinolinethiol detection limit of 10−6 M. Higher detection depths may possibly be obtained with optimization of the NP assemblies, along with improvements in the instrumentation. Such NP assemblies offer prospects for in vivo, non‐invasive detection of tumours along with scope for incorporation of drugs and their targeted and controlled release at tumour sites. These diagnostic agents combined with drug delivery systems could serve as a ‘theranostic agent’, an integration of diagnostics and therapeutics into a single platform. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Near‐infrared emissive (NIR) porphyrin‐implanted carbon nanodots (PCNDs or MPCNDs) are prepared by selectively carbonization of free base or metal complexes [M = Zn(II) or Mn(III)] of tetra‐(meso‐aminophenyl)porphyrin in the presence of citric acid. The as‐prepared nanodots exhibit spontaneously NIR emission, small size, good aqueous dispersibility, and favorable biocompatibility characteristic of both porphyrins and pristine carbon nanodots. The subcellular localization experiment of nanodots indicates a lysosome‐targeting feature. And the in vitro photodynamic therapy (PDT) results on HeLa cells indicate the nanodots alone have no adverse effect on tumor cells, but display remarkable photodynamic efficacy upon irradiation. Moreover, MnPCNDs containing paramagnetic Mn(III) ions, which possesses good biocompatibility, NIR luminescence, and magnetic resonance imaging and efficient singlet oxygen production, are further studied in magnetic resonance imaging‐guided photodynamic therapy in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号