首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Polythiophene‐coated porous silicon core–shell nanospheres (Si@PTh) composite are synthesized by a simple chemical oxidative polymerization approach. The polythiophene acts as a flexible layer to hold silicon grains when they are repeatedly alloying/dealloying with lithium during the discharge/charge process. The long lifespan and high‐current‐density rate ­capability (at a current of 8 A g?1) of the Si@PTh composite are vastly improved compared with as‐prepared Si spheres. Typically, these Si@PTh composite electrodes achieve a reversible capacity of 1130.5 mA h g?1 at 1 A g?1 current density after 500 cycles, and can even possess a discharge capacity up to 451.8 mA h g?1 at 8 A g?1. The improved electrochemical performance can be ascribed to the synergy effects of the flexible PTh coating and the distinctive core–shell nanospheres with porous structure, which can largely alleviate the volume expansion of the Si during alloying with lithium.  相似文献   

2.
Lithium‐ion batteries (LIBs) have been extensively investigated due to the ever‐increasing demand for new electrode materials for electric vehicles (EVs) and clean energy storage. A wide variety of nano/microstructured LIBs electrode materials are hitherto created via self‐assembly, ranging from 0D nanospheres; 1D nanorods, nanowires, or nanobelts; and 2D nanofilms to 3D nanorod array films. Nanoparticles can be utilized to build up integrated architectures. Understanding of nanoparticles’ self‐assembly may provide information about their organization into large aggregates through low‐cost, high‐efficiency, and large‐scale synthesis. Here, the focus is on the recent advances in preparing hierarchically nano/microstructured electrode materials via self‐assembly. The hierarchical electrode materials are assembled from single component, binary to multicomponent building blocks via different driving forces including diverse chemical bonds and non‐covalent interactions. It is expected that nanoparticle engineering by high‐efficient self‐assembly process will impact the development of high‐performance electrode materials and high‐performance LIBs or other rechargeable batteries.  相似文献   

3.
1D nanostructured metal oxides with porous structure have drawn wide attention to being used as high‐performance anode materials for lithium‐ion batteries (LIBs). This study puts forward a simple and scalable strategy to synthesize porous NiO nanorods with the help of a thermal treatment of metal‐organic frameworks in air. The NiO nanorods with an average diameter of approximately 38 nm are composed of nanosized primary particles. When evaluated as anode materials for LIBs, an initial discharge capacity of 743 mA h g?1 is obtained at a current density of 100 mA g?1, and a high reversible capacity is still maintained as high as 700 mA h g?1 even after 60 charge–discharge cycles. The excellent electrochemical performance is mainly ascribed to the 1D porous structure.  相似文献   

4.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

5.
6.
A new strategy is reported to fabricate Cu@MxOy (M = Cu, Mn, Co, Fe) nanocable arrays using five‐fold twinned copper (Cu) nanowire (NW) arrays as starting materials, to promote both the cycling stability and high rate capability of MxOy as anodes for LIBs. Conductive Cu NW arrays were synthesized on Cu foil via chemical vapor deposition (CVD), followed by the oxidation of their surface so as to form Cu@Cu2O nanocable arrays. The thickness of the active material (Cu2O) on the Cu NW arrays can be tuned from 20 nm to 160 nm by simply controlling the oxidation time. Based on this accurate control, the optimal coating thickness of Cu2O was determined to be around 35 nm. Additionally, the Cu2O active material shell can be easily transformed to other metal oxides with even higher specific capacities via a “coordinating etching” strategy based on Pearson's principle, resulting in Cu@MxOy nanocable arrays (M = Mn, Co, Fe). When applied as electrodes for LIBs, these 3D electrodes show long cycle lives (over 300 cycles) and high rate capabilities.  相似文献   

7.
Silica (SiO2) is regarded as one of the most promising anode materials for lithium‐ion batteries due to the high theoretical specific capacity and extremely low cost. However, the low intrinsic electrical conductivity and the big volume change during charge/discharge cycles result in a poor electrochemical performance. Here, hollow silica spheres embedded in porous carbon (HSS–C) composites are synthesized and investigated as an anode material for lithium‐ion batteries. The HSS–C composites demonstrate a high specific capacity of about 910 mA h g?1 at a rate of 200 mA g?1 after 150 cycles and exhibit good rate capability. The porous carbon with a large surface area and void space filled both inside and outside of the hollow silica spheres acts as an excellent conductive layer to enhance the overall conductivity of the electrode, shortens the diffusion path length for the transport of lithium ions, and also buffers the volume change accompanied with lithium‐ion insertion/extraction processes.  相似文献   

8.
Niobium nitride/nitrogen‐doped graphene nanosheet hybrid materials are prepared by a simple hydrothermal method combined with ammonia annealing and their electrochemical performance is reported. It is found by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the as‐obtained niobium nitride nanoparticles are about 10–15 nm in size and homogeneously anchored on graphene. A non‐aqueous lithium‐ion capacitor is fabricated with an optimized mass loading of activated carbon cathode and the niobium nitride/nitrogen‐doped graphene nanosheet anode, which delivers high energy densities of 122.7–98.4 W h kg?1 at power densities of 100–2000 W kg?1, respectively. The capacity retention is 81.7% after 1000 cycles at a current density of 500 mA g?1. The high energy and power of this hybrid capacitor bridges the gap between conventional high specific energy lithium‐ion batteries and high specific power electrochemical capacitors, which holds great potential applications in energy storage for hybrid electric vehicles.  相似文献   

9.
10.
With the increasing energy demands for electronic devices and electrical vehicles, anode materials for lithium‐ion batteries with high specific capacity, good cyclic and rate performance become one of the focal areas of research. A class of them is the copper‐based nanomaterials that have thermal and chemical stability, high theoretical specific capacity, low price and environment friendliness. Now this kind of nanomaterials has been recognized as one of the critical materials for lithium‐ion batteries due to the predicted future market growth. Current status of different copper‐based materials which produced already are discussed. In this review, comprehensive summaries and evaluations are given in synthesis strategies, tailored material properties and different electrochemical performance. Recent progress of general copper‐based nanomaterials for lithium‐ion batteries is carefully presented.  相似文献   

11.
Vanadium pentoxide (V2O5) is a promising cathode material for high‐performance lithium‐ion batteries (LIBs) because of its high specific capacity, low cost, and abundant source. However, the practical application of V2O5 in commercial LIBs is still hindered by its intrinsic low ionic diffusion coefficient and moderate electrical conductivity. In the past decades, progressive accomplishments have been achieved that rely on the synthesis of nanostructured materials, carbon hybridization, and cation doping. Generally, fabrication of nanostructured electrode materials can effectively decrease the ion and electron transport distances while carbon hybridization and cation doping are able to significantly increase the electrical conductivity and diffusion coefficient of Li+. Implementation of these strategies addresses the problems that are related to the ionic and electronic conductivity of V2O5. Accordingly, the electrochemical performances of V2O5‐based cathodes are significantly improved in terms of discharge capacity, cycling stability, and rate capability. In this review, the recent advances in the synthesis of V2O5‐based cathode materials are highlighted that focus on the fabrication of nanostructured materials, carbon hybridization, and cation doping.  相似文献   

12.
Nanostructured ternary/mixed transition metal oxides have attracted considerable attentions because of their high‐capacity and high‐rate capability in the electrochemical energy storage applications, but facile large‐scale fabrication with desired nanostructures still remains a great challenge. To overcome this, a facile synthesis of porous NiCoO2 nanofibers composed of interconnected nanoparticles via an electrospinning–annealing strategy is reported herein. When examined as anode materials for lithium‐ion batteries, the as‐prepared porous NiCoO2 nanofibers demonstrate superior lithium storage properties, delivering a high discharge capacity of 945 mA h g?1 after 140 cycles at 100 mA g?1 and a high rate capacity of 523 mA h g?1 at 2000 mA g?1. This excellent electrochemical performance could be ascribed to the novel hierarchical nanoparticle‐nanofiber assembly structure, which can not only buffer the volumetric changes upon lithiation/delithiation processes but also provide enlarged surface sites for lithium storage and facilitate the charge/electrolyte diffusion. Notably, a facile synthetic strategy for fabrication of ternary/mixed metal oxides with 1D nanostructures, which is promising for energy‐related applications, is provided.  相似文献   

13.
Three‐dimensional (3D) multilayer molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) nanocomposites are prepared by a solution‐processed self‐assembly based on the interaction using different sizes of MoS2 and GO nanosheets followed by in situ chemical reduction. 3D multilayer assemblies with MoS2 wrapped by large RGO nanosheets and good interface are observed by transmission electron microscopy. The interaction of Na+ ions with oxygen‐containing groups of GO is also investigated. The measurement of lithium ion batteries (LIBs) shows that MoS2/RGO anode nanocomposite with a weight ratio of MoS2 to GO of 3:1 exhibits an excellent rate performance of 750 mAh g?1 at 3 A g?1 outperforming many previous studies and a high reversible capacity up to ≈1180 mAh g?1 after 80 cycles at 100 mA g?1. Good rate performance and high capacity of MoS2/RGO with 3D unique layered‐structures are attributed to the combined effects of continuous conductive networks of RGO, good interface facilitating charge transfer, and strong RGO sheets preventing the volume expansion. Results indicate that 3D multilayer MoS2/RGO prepared by a facile solution‐processed assembly can be developed to be an excellent nanoarchitecture for high‐performance LIBs.  相似文献   

14.
This study presents a general approach for the synthesis of carbon‐encapsulated wire‐in‐tube Co3O4/MnO2 heterostructure nanofibers (Co3O4/MnO2@C) via electrospinning followed by calcination. The as‐synthesized Co3O4/MnO2@C is investigated as the sodium‐ion batteries anode material, which not only exhibits a high reversible capacity of 306 mAh g−1 at 100 mA g−1 over 200 cycles, but also shows a cycling stability of 126 mAh g−1 after 1000 cycles at a high current density of 800 mA g−1. The excellent electrochemical performance can be ascribed to the contribution from carbon‐encapsulated outer‐tube Co3O4 and inner‐wire MnO2 heterostructures, which offer a large internal space and good electrical conductivity. The present work can be helpful in providing new insights into heterostructures for sodium‐ion batteries and other applications.  相似文献   

15.
2D MoS2 has a significant capacity decay due to the stack of layers during the charge/discharge process, which has seriously restricted its practical application in lithium‐ion batteries. Herein, a simple preform‐in situ process to fabricate vertically grown MoS2 nanosheets with 8–12 layers anchored on reduced graphene oxide (rGO) flexible supports is presented. As an anode in MoS2/rGO//Li half‐cell, the MoS2/rGO electrode shows a high initial coulomb efficiency (84.1%) and excellent capacity retention (84.7% after 100 cycles) at a current density of 100 mA g?1. Moreover, the MoS2/rGO electrode keeps capacity as high as 786 mAh g?1 after 1000 cycles with minimum degradation of 54 µAh g?1 cycle?1 after being further tested at a high current density of 1000 mA g?1. When evaluated in a MoS2/rGO//LiCoO2 full‐cell, it delivers an initial charge capacity of 153 mAh g?1 at a current density of 100 mA g?1 and achieves an energy density of 208 Wh kg?1 under the power density of 220 W kg?1.  相似文献   

16.
Porous electrode materials with large specific surface area, relatively short diffusion path, and higher electrical conductivity, which display both better rate capabilities and good cycle lives, have huge benefits for practical applications in lithium‐ion batteries. Here, uniform porous NiCo2O4 nanorods (PNNs) with pore‐size distribution in the range of 10–30 nm and lengths of up to several micrometers are synthesized through a convenient oxalate co‐precipitation method followed by a calcining process. The PNN electrode exhibits high reversible capacity and outstanding cycling stability (after 150 cycles still maintain about 650 mA h g?1 at a current density of 100 mA g?1), as well as high Coulombic efficiency (>98%). Moreover, the PNNs also exhibit an excellent rate performance, and deliver a stable reversible specific capacity of 450 mA h g?1 even at 2000 mA g?1. These results demonstrate that the PNNs are promising anode materials for high‐performance Li‐ion batteries.  相似文献   

17.
Growing market demand for portable energy storage has triggered significant research on high‐capacity lithium‐ion (Li‐ion) battery anodes. Various elements have been utilized in innovative structures to enable these anodes, which can potentially increase the energy density and decrease the cost of Li‐ion batteries. In this review, electrode and material parameters are considered in anode fabrication. The periodic table is then used to explore how the choice of anode material affects rate performance, cycle stability, Li‐ion insertion/extraction potentials, voltage hysteresis, volumetric and specific capacities, and other critical parameters. Silicon (Si), germanium (Ge), and tin (Sn) anodes receive more attention in literature and in this review, but other elements, such as antimony (Sb), lead (Pb), magnesium (Mg), aluminum (Al), gallium (Ga), phosphorus (P), arsenic (As), bismuth (Bi), and zinc (Zn) are also discussed. Among conversion anodes focus is placed on oxides, nitrides, phosphides, and hydrides. Nanostructured carbon (C) receives separate consideration. Issues in high‐ capacity research, such as volume change, insufficient coulombic efficiency, and solid electrolyte interphase (SEI) layer stability are elucidated. Finally, advanced carbon composites utilizing carbon nanotubes (CNT), graphene, and size preserving external shells are discussed, including high mass loading (thick) electrodes and electrodes capable of providing load‐bearing properties.  相似文献   

18.
Manganese oxide is a highly promising anode material of lithium‐ion batteries (LIBs) for its low insertion voltage and high reversible capacity. Porous MnO microspheres are prepared by a facile method in this work. As an anode material of LIB, it can deliver a high reversible capacity up to 1234.2 mA h g?1 after 300 cycles at 0.2 C, and a capacity of 690.0 mA h g?1 in the 500th cycle at 2 C. The capacity increase with cycling can be attributed to the growth of reversible polymer/gel‐like film, and the better cycling stability and the superior rate performance can be attributed to the featured structure of the microspheres composed of nanoparticles with a short transport path for lithium ions, a large specific surface, and material/electrolyte contact area. The results suggest that the porous MnO microspheres can function as a promising anode material for high‐performance LIBs.  相似文献   

19.
Sn is regarded as a promising anode material for Li‐ion batteries due to high capacity and cost effectiveness. Hitherto large‐scale fabrication of Sn‐based materials while achieving both high capacity and long cycle life remains challenging, but it is highly required for its realization in practical applications. Furthermore, low melting point always casts shadow over the morphology‐controllable preparation, and leads to multistep or high‐cost processes. Here, a facile and scalable method is devised for a 2D hybrid structure of Sn@graphene‐based nanosheets incorporating of optimized nitrogen species (≈13 wt%). Distinct from conventional Sn–C composites, the fairly N‐rich carbon nanosheets liberate limited potential of low N doping, induce massive extra Li‐storage sites, and encourage a high capacity significantly. In addition, these abundantly anchored heteroatoms also promote the homogeneous dispersion and robust confinement of ultrasmall Sn nanoparticles into the flexible graphene‐based nanosheets. This elastic encapsulation towards Sn nanoparticles admirably maintains structural integrity through effective remission of volume expansion, demonstrating a super long‐term cyclic stability for 1000 cycles. This structural and componential engineering offers a significant implication for rational design of materials in extended areas of energy conversion and storage.  相似文献   

20.
One of the key strategies used to obtain high‐rate Li‐ion battery is the reduction of the Li‐ion path length inside the active materials and the enhancement of the ionic diffusion outside the active materials. It is demonstrated that electrochemical performance can be improved significantly at high C‐rates using carbon‐coated spherical aggregates or “supraballs” of randomly packed olivine LiFePO4 (LFP) nanoplates as cathode active materials. 258 nm LFP nanoplates with 30 nm thickness are synthesized through a high‐temperature solvothermal method, in which short lithium‐ion channels are formed perpendicular to the top or bottom planes. These thin nanoplates are formed into carbon‐coated “supraballs” through a spray‐drying and thermal annealing process, in which nanoplates are not stacked but randomly packed due to relatively fast drying. Internal and external nanoplate ion diffusion is therefore enhanced simultaneously due to the optimal molecular crystalline structure and interparticle pore structures of the nanoplates. Indeed, the initial capacity of the carbon‐coated supraballs is 162 mAh g?1 (173.34 mAh cm?3) at 0.1 C and more than 80% is retained (≈130.91 mAh g?1) at 50 C. Furthermore, they offer durable cycling stability (>500 cycles) at 1 C without compromising their capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号