首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了制备氮-磷共掺杂石墨烯量子点(N,P-GQDs)以探索其荧光性质的可调性,我们采用水热法以柠檬酸为碳源,六氯三聚磷腈为氮源、磷源,制备出了蓝色光致发光的氮-磷共掺杂石墨烯量子点(N,P-GQDs)。通过一些测试表征可以发现:制备的N,P-GQDs尺寸分布均匀,其横向平均尺寸约4.8 nm,晶格间距为0.24 nm,纵向平均厚度约0.95 nm。在光学性能测试中,观察到N,P-GQDs的荧光发射光谱对激发波长具有强的依赖性,其对可见光表现为较强的吸收性。通过量子产率公式计算得出N,P-GQDs的量子产率为10.4%。所制备出的N,P-GQDs具有优异的抗漂白能力及光学稳定性。通过调节样品的稀释浓度比例对N,P-GQDs的荧光性质的可调性进行研究,发现随着稀释倍数的增加,荧光强度先增加后下降。此外,发现制备的N,P-GQDs对Fe3+产生强烈的复合作用,使N,P-GQDs荧光猝灭,由此建立了Fe3+的传感分析方法。  相似文献   

2.
3.
4.
Ni20[(OH)12(H2O)6][(HPO4)8(PO4)4]·12H2O nanorods are successfully synthesized via a one‐pot hydrothermal reaction. A high‐performance flexible asymmetric all‐solid‐state supercapacitor based on the obtained Ni20[(OH)12(H2O)6][(HPO4)8(PO4)4]·12H2O nanorods (positive electrode) and graphene nanosheets (negative electrode) is successfully assembled. It is the first report of this nanomaterial applied for all‐solid‐state supercapacitors. Interestingly, a maximum volumetric energy density of 0.446 mW h cm?3 at a current density of 0.5 mA cm?2 and a maximum power density of 44.1 mW cm?3 at a current density of 6.0 mA cm?2 are achieved by the as‐assembled device. What's more, the device also shows excellent mechanical flexibility and little capacitance change after over 5000 charge/discharge cycles at a current density of 0.5 mA cm?2.  相似文献   

5.
It is of scientific importance to obtain graphene quantum dots (GQDs) with narrow‐size distribution in order to unveil their size‐dependent structural and optical properties, thereby further to explore the energy band diagram of GQDs. Here, a soft‐template microwave‐assisted hydrothermal method to prepare GQDs with diameters less than 5 nm ± 0.55 nm is reported. The size‐dependent photoluminescence (PL) quantum yield (QY) decay lifetime and electron energy loss spectroscopy (EELS) of the GQDs are studied systematically. The QY of the GQDs with an average diameter of 2 nm is the highest (15%) among all the samples investigated and the QY decreases with increasing diameter of the GQDs. The size‐dependence of the PL decay lifetime is also observed. The result suggests that spatial confinement effects related to radiative relaxation play an important role in the size‐dependent decay lifetime. A realistic energy band diagram of the GQDs is deduced from the experimental results.  相似文献   

6.
Graphitic carbon nitride quantum dots (g-CNQDs)-based colorimetric sensors are typically solution-based and hence incompatible with wearable electronics. Today's competitive technology demands safe and reliable, high-performance sensors suitable for integration with sophisticated electronics—all at a low cost. Herein, a flexible and reusable solid-state fluoride ion sensor manufactured by combining the intriguing surface properties of laser-patterned carbon (LP-C) with the sensitivity of g-CNQDs is reported. LP-C is obtained by direct IR-laser writing onto polyimide films, and g-CNQDs are synthesized via a solvent-free and zero-waste green process. The hybrid of LP-C and g-CNQDs (g-CNQDs/LP-C), mimics the natural enzyme horseradish peroxidase and oxidizes the chromogenic substrate 3,3’,5,5’-tetramethylbenzidine in the presence of H2O2 in acidic media. The highly selective and user-friendly nanozyme sensors feature a lower limit of detection of 0.568 ± 0.006  × 10−6 m (23.8 ± 1.5 µg L−1) with linearity in the range of 0.5 × 10−6 to 100  × 10−6 m . A sensing mechanism based on the electronic transitions of g-CNQDs and LP-C, the two variants of nitrogen-containing carbon used in this work, is established. Finally, the device is tested for fluoride ion sensing in natural water samples collected from the Uhl river in Mandi, India.  相似文献   

7.
Achieving bright, reliable, robust, and stable probes for in vivo imaging is becoming extremely urgent for the cancer imaging research community. To date very few works have reported on elucidating in the varied and chemically complex biological milieu. The authors report detailed investigations of the synthesis of near‐infrared, water dispersive, strongly luminescent, and highly stable PbS/CdS/ZnS core/shell/shell quantum dots (QDs). These QDs are extremely stable, they could keep their initial morphology, dispersion status, and photoluminescence (PL) in phosphate buffered saline buffer for as long as 14 months. The QDs also show excellent photostability and could keep ≈80% of their initial PL intensity after 1 h continuous, strong UV illumination. More interestingly, they show negligible toxicity to cultured cells even at high QDs concentration. Given these outstanding properties, the QDs are explored for in vivo, tumor imaging in mice. With one order of magnitude lower QD concentration (0.04 mg mL–1), significantly weaker laser intensity (0.04 W cm–2 vs ≈1 W cm–2), and considerably shorter signal integration time (≤1 ms vs hundreds of ms) as compared to the best reported rare earth doped nanoparticles, the QDs show high emission intensity even at injection depth of ≈2.5 mm.  相似文献   

8.
9.
10.
11.
Zero‐dimensional photoluminescent (PL) graphene quantum dots (GQDs) that can be used as the cell‐imaging reagent are prepared by a hydrothermal route using the graphene oxide (GO) as the carbon source. Under the optimized hydrothermal conditions, an initial hydrogen peroxide concentration of 0.5 mg mL?1 at 180 °C for 120 min, the GO sheets can be cut into nanocrystals with lateral dimensions in the range of 1.5–5.5 nm and an average thickness of around 1.1 nm. The as‐prepared GQDs exhibit an abundance of hydrophilic hydroxy and carboxyl groups and emit bright blue luminescence with up‐conversion properties in a water solution at neutral pH. Most interestingly, they indicate excitation‐independent emission characteristics, and the surface state is demonstrated to have a key role in the PL properties. The fluorescence quantum yield of the GQDs is tested to be around 6.99% using quinine sulfate as a standard. In addition, the as‐prepared GQDs can enter into HeLa cells easily as a fluorescent imaging reagent without any further functionalization, indicating they are aqueous stability, biocompatibility, and promising for potential applications in biolabeling and solution state optoelectronics.  相似文献   

12.
Highly performance photodetector requires a wide range of responses of the incident photons and converts them to electrical signals efficiently. Here, a photodetector based on formamidinium lead halide perovskite quantum dots (e.g., FAPbBr3 QDs)–graphene hybrid, aiming to take the both advantages of the two constituents. The FAPbBr3 QD–graphene layer not only benefits from the high mobility and wide spectral absorption of the graphene material but also from the long charge carrier lifetime and low dark carrier concentration of the FAPbBr3 QDs. The photodetector based on FAPbBr3 QD–graphene hybrid exhibits a broad spectral photoresponse ranging from 405 to 980 nm. A photoresponsivity of 1.15 × 105AW−1 and an external quantum efficiency as high as 3.42 × 107% are obtained under an illumination power of 3 µW at 520 nm wavelength. In detail, a high responsivity is achieved in 405–538 nm, while a relatively low but fast response is observed in 538–980 nm. The photoelectric conversion mechanism of this hybrid photodetector is investigated in the view of built‐in electric field from the QD–graphene contact which improves the photoconductive gain.  相似文献   

13.
In this work, it is shown how different carrier recombination paths significantly broaden the photoluminescence (PL) emission bandwidth observed in type‐II self‐assembled SiGe/Si(001) quantum dots (QDs). QDs grown by molecular beam epitaxy with very homogeneous size distribution, onion‐shaped composition profile, and Si capping layer thicknesses varying from 0 to 1100 nm are utilized to assess the optical carrier‐recombination paths. By using high‐energy photons for PL excitation, electron‐hole pairs can be selectively generated either above or below the QD layer and, thus, clearly access two radiative carrier recombination channels. Fitting the charge carrier capture‐, loss‐ and recombination‐dynamics to PL time‐decay curves measured for different experimental configurations allows to obtain quantitative information of carrier capture‐, excitonic‐emission‐, and Auger‐recombination rates in this type‐II nano‐system.  相似文献   

14.
15.
Herein a novel approach is reported to achieve tunable and high photoluminescence (PL) quantum yield (QY) from the self‐grown spherical TiO2 quantum dots (QDs) on fluorine doped TiO2 (F‐TiO2) flowers, mesoporous in nature, synthesized by a simple solvothermal process. The strong PL emission from F‐TiO2 QDs centered at ≈485 nm is associated with shallow and deep traps, and a record high PL QY of ≈5.76% is measured at room temperature. Size distribution and doping of F‐TiO2 nanocrystals (NCs) are successfully tuned by simply varying the HF concentration during synthesis. During the post‐growth rapid thermal annealing (RTA) under vacuum, the arbitrary shaped F‐TiO2 NCs transform into spherical QDs with smaller sizes and it shows dramatic enhancement (≈163 times) in the PL intensity. Electron spin resonance (ESR) and X‐ray photoelectron spectroscopy (XPS) confirm the high density of oxygen vacancy defects on the surface of TiO2 NCs. Confocal fluorescence microscopy imaging shows bright whitish emission from the F‐TiO2 QDs. Low temperature and time resolved PL studies reveal that the ultrafast radiative recombination in the TiO2 QDs results in highly efficient PL emission. A highly stable, biologically inert, and highly fluorescent TiO2 QDs/flowers without any capping agent demonstrated here is significant for emerging applications in bioimaging, energy, and environmental cleaning.  相似文献   

16.
17.
18.
19.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

20.
An easy approach for large‐scale and low‐cost synthesis of photoluminescent (PL) graphene quantum dots (GQDs) based on the carbonization of commercially available polycyclic aromatic hydrocarbon (PAH) precursors with strong acid and followed by hydrothermal reduction with hydrazine hydrate is reported. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) characterizations indicate that the size and height of GQDs are in the range of 5–10 nm and 0.5–2.5 nm, respectively. PAH, which has more benzene rings, generally forms GQDs with relatively larger size. The GQDs show high water solubility, tunable photoluminescence, low cytotoxicity, and good optical stability, which makes them promising fluorescent probes for cellular imaging. In addition, the fluorescence of GQDs shows a sensitive and selective quenching effect to Fe3+ with a detection limit of 5 × 10?9m . By combination with the Fe2+/Fe3+ redox couple, the PL GQDs are able to detect oxidant, using H2O2 as an example. This study opens up new opportunities to make full use of GQDs because of their facile availability, cost‐effective productivity, and robust functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号