首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Given a connected surface \({\mathbb {F}}^2\) with Euler characteristic \(\chi \) and three integers \(b>a\ge 1<k\), an \((\{a,b\};k)\)-\({\mathbb {F}}^2\) is a \({\mathbb {F}}^2\)-embedded graph, having vertices of degree only k and only a- and b-gonal faces. The main case are (geometric) fullerenes (5, 6; 3)-\({\mathbb {S}}^2\). By \(p_a\), \(p_b\) we denote the number of a-gonal, b-gonal faces. Call an \((\{a,b\};k)\)-map lego-admissible if either \(\frac{p_b}{p_a}\), or \(\frac{p_a}{p_b}\) is integer. Call it lego-like if it is either \(ab^f\)-lego map, or \(a^fb\)-lego map, i.e., the face-set is partitioned into \(\min (p_a,p_b)\) isomorphic clusters, legos, consisting either one a-gon and \(f=\frac{p_b}{p_a}\,b\)-gons, or, respectively, \(f=\frac{p_a}{p_b}\,a\)-gons and one b-gon; the case \(f=1\) we denote also by ab. Call a \((\{a,b\};k)\)-map elliptic, parabolic or hyperbolic if the curvature \(\kappa _b=1+\frac{b}{k}-\frac{b}{2}\) of b-gons is positive, zero or negative, respectively. There are 14 lego-like elliptic \((\{a,b\};k)\)-\({\mathbb {S}}^2\) with \((a,b)\ne (1,2)\). No \((\{1,3\};6)\)-\({\mathbb {S}}^2\) is lego-admissible. For other 7 families of parabolic \((\{a,b\};k)\)-\({\mathbb {S}}^2\), each lego-admissible sphere with \(p_a\le p_b\) is \(a^fb\) and an infinity (by Goldberg–Coxeter operation) of \(ab^f\)-spheres exist. The number of hyperbolic \(ab^f\,(\{a,b\};k)\)-\({\mathbb {S}}^2\) with \((a,b)\ne (1,3)\) is finite. Such \(a^f b\)-spheres with \(a\ge 3\) have \((a,k)=(3,4),(3,5),(4,3),(5,3)\) or (3, 3); their number is finite for each b, but infinite for each of 5 cases (ak). Any lego-admissible \((\{a,b\};k)\)-\({\mathbb {S}}^2\) with \(p_b=2\le a\) is \(a^f b\). We list, explicitly or by parameters, lego-admissible \((\{a,b\};k)\)-maps among: hyperbolic spheres, spheres with \(a\in \{1,2\}\), spheres with \(p_b\in \{2,\frac{p_a}{2}\}\), Goldberg–Coxeter’s spheres and \((\{a,b\};k)\)-tori. We present extensive computer search of lego-like spheres: 7 parabolic (\(p_b\)-dependent) families, basic examples of all 5 hyperbolic \(a^fb\) (b-dependent) families with \(a\ge 3\), and lego-like \((\{a,b\};3)\)-tori.  相似文献   

2.
An alternative formulation of the theory of generalized resonance structures (Clar covers) of single zigzag chains N(n), based on the novel concept of interfaces, is presented. The global structure of every Clar cover can be conveniently expressed as a unique sequence of n interfaces. The complete set of Clar covers is then robustly constructed as the complete set of walks of length \(n+1\) on the associated interface connectivity graph. The presented algorithm is readily generalizable to an arbitrary class of benzenoid structures.  相似文献   

3.
The McClelland formula, based on the upper bound \(\sqrt{2mn}\), is capable of reproducing over 99.5% of the total \(\pi \)-electron energy (\(E_\pi \)) of a conjugated hydrocarbon, whose molecules possess n carbon atoms and m carbon–carbon bonds. Its weak point is that it predicts equal \(E_\pi \)-values for all isomers. We now show how this failure can be overcome, offering a general strategy for extending McClelland’s formula. By means of one of these extensions, \(E_\pi \) is related with the energy of the highest occupied molecular orbital, and the error of the new formula is diminished by more than \(50\%\) relative to the standard McClelland approximation.  相似文献   

4.
Apparent molar volumes, apparent molar adiabatic compressibilities and viscosity B-coefficients for metformin hydrochloride in aqueous d-glucose solutions were determined from solution densities, sound velocities and viscosities measured at T = (298.15–318.15) K and at pressure p = 101 kPa as a function of the metformin hydrochloride concentrations. The standard partial molar volumes (\( \phi_{V}^{0} \)) and slopes (\( S_{V}^{*} \)) obtained from the Masson equation were interpreted in terms of solute–solvent and solute–solute interactions, respectively. Solution viscosities were analyzed using the Jones–Dole equation and the viscosity A and B coefficients discussed in terms of solute–solute and solute–solvent interactions, respectively. Adiabatic compressibility (\( \beta_{s} \)) and apparent molar adiabatic compressibility (\( \phi_{\kappa }^{{}} \)), limiting apparent molar adiabatic compressibility (\( \phi_{\kappa }^{0} \)) and experimental slopes (\( S_{\kappa }^{*} \)) were determined from sound velocity data. The standard volume of transfer (\( \Delta_{t} \phi_{V}^{0} \)), viscosity B-coefficients of transfer (\( \Delta_{t} B \)) and limiting apparent molar adiabatic compressibility of transfer (\( \Delta_{t} \phi_{\kappa }^{0} \)) of metformin hydrochloride from water to aqueous glucose solutions were derived to understand various interactions in the ternary solutions. The activation parameters of viscous flow for the studied solutions were calculated using transition state theory. Hepler’s coefficient \( (d\phi /dT)_{p} \) indicated the structure making ability of metformin hydrochloride in the ternary solutions.  相似文献   

5.
Densities (ρ), speeds of sound (u), and viscosities (η) are reported for binary mixtures of 2-methylaniline with carboxylic acids (ethanoic acid, propanoic acid and butanoic acid) over the entire composition range of mole fraction at T?=?(303.15–318.15) K and at atmospheric pressure (0.1 MPa). The excess properties such as excess molar volume (V m E ), excess isentropic compressibility (κ S E ) and excess Gibbs energy of activation of viscous flow (G*E) are calculated from the experimental densities, speeds of sound and viscosities. Excess properties are correlated using the Redlich–Kister polynomial equation. The partial molar volumes, \( \bar{V}_{\text{m,1}} \) and \( \bar{V}_{\text{m,2}} \), partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}} \) and \( \bar{K}_{\text{s,m,2}} \), excess partial molar volumes, \( \bar{V}_{\text{m,1}}^{\text{E}} \) and \( \bar{V}_{\text{m,2}}^{\text{E}} \), and excess partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}}^{\text{E}} \) and \( \bar{K}_{\text{s,m,2}}^{\text{E}} \), over whole composition range, partial molar volumes, \( \bar{V}_{\text{m,1}}^{ \circ } \) and \( \bar{V}_{\text{m,2}}^{ \circ } \), partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}}^{ \circ } \) and \( \bar{K}_{\text{s,m,2}}^{ \circ } \), excess partial molar volumes, \( \bar{V}_{\text{m,1}}^{{ \circ {\text{E}}}} \) and \( \bar{V}_{{{\text{m}},2}}^{{ \circ {\text{E}}}} \), and excess partial molar isentropic compressibilities, \( \bar{K}_{\text{s,m,1}}^{{ \circ {\text{E}}}} \) and \( \bar{K}_{\text{s,m,2}}^{{ \circ {\text{E}}}} \), of the components at infinite dilution have also been calculated from the analytically obtained Redlich–Kister polynomials. The excess molar volume VE results are analyzed using the Prigogine–Flory–Patterson theory. Analysis of each of the three contributions viz. interactional VE(int.), free volume VE(fv.) and characteristic pressure p* to VE showed that the interactional contributions are positive for all systems while the free volume and characteristic pressure p* contributions are negative for all the binary mixtures. The results are analyzed in terms of attractive forces between 2-methylaniline and carboxylic acids molecules. Good agreement is obtained between excess quantities and spectroscopic data.  相似文献   

6.
In the present investigations, the excess molar volumes, \( V_{ijk}^{\text{E}} \), excess isentropic compressibilities, \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), and excess heat capacities, \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \), for ternary 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (i) + 1-butyl-3-methylimidazolium tetrafluoroborate (j) + 1-ethyl-3-methylimidazolium tetrafluoroborate (k) mixture at (293.15, 298.15, 303.15 and 308.15) K and excess molar enthalpies, \( \left( {H^{\text{E}} } \right)_{ijk} \), of the same mixture at 298.15 K have been determined over entire composition range of x i and x j . Satisfactorily corrections for the excess properties \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) have been obtained by fitting with the Redlich–Kister equation, and ternary adjustable parameters along with standard errors have also been estimated. The \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) data have been further analyzed in terms of Graph Theory that deals with the topology of the molecules. It has also been observed that Graph Theory describes well \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) values of the ternary mixture comprised of ionic liquids.  相似文献   

7.
Theoretical calculations of Co\(_{n-x}\)Pt\(_x\) (n = 1–3; \(x \le n\)) clusters on Ni(100) surface for their spin and orbital magnetic moments, as well as the magnetic anisotropy energy (MAE), are performed by using the density-functional theory (DFT) method including a self-consistent treatment of spin–orbit coupling (SOC). The results reveal that the ferromagnetic Co atoms in intra Co\(_{n-x}\)Pt\(_x\) adclusters couple ferromagnetically to their underlayer Ni atoms. The predominant inter-interactions between Co adatoms and Ni surface with the partly filled 3d band, together with the secondary intra-interactions between Co adatoms and Pt adatoms with fully filled 5d band, lead to a strongly quenched orbital moment (\(\mu _{\mathrm{{orb}}}^{\mathrm{{Co}}}\) = 0.18–0.14 \(\mu _B\); \(\mu _{\mathrm{{orb}}}^{\mathrm{{Pt}}} \approx \) 0.24–0.19 \(\mu _B\)) but a less quenched spin moment (\(\mu _{\mathrm{{spin}}}^{\mathrm{{Co}}} \approx \) 2.0 \(\mu _B\); \(\mu _{\mathrm{{spin}}}^{\mathrm{{Pt}}} \approx \) 0.35 \( \mu _B\)). The MAEs of CoPt adclusters exhibit a strong dependence on alloying effect rather than size effect, which is direly proportional to SOC strength and orbital moment anisotropy. The oxidations of CoPt clusters always reduce orbital magnetic moments and consequently decrease the corresponding MAEs.  相似文献   

8.
We evaluate the tunneling short-circuit current density \(J_{TU}\) in a pin solar cell in which the transition metal dichalcogenide heterostructure (\(\hbox {MoS}_2/\hbox {WS}_2\) superlattice) is embedded in the intrinsic i region. The effects of varying well and barrier widths, Fermi energy levels and number of quantum wells in the i region on \(J_{TU}\) are examined. A similar analysis is performed for the thermionic current \(J_{TH}\) that arises due to the escape and recapture of charge carriers between adjacent potential wells in the i-region. The interplay between \(J_{TU}\) and \(J_{TH}\) in the temperature range (300–330 K) is examined. The thermionic current is seen to exceed the tunneling current considerably at temperatures beyond 310 K, a desirable attribute in heterostructure solar cells. This work demonstrates the versatility of monolayer transition metal dichalcogenides when utilized as fabrication materials for van der Waals heterostructure solar cells.  相似文献   

9.
Some equilibria involving gold(I) thiomalate (mercaptosuccinate, TM) complexes have been studied in the aqueous solution at 25 °C and I?=?0.2 mol·L?1 (NaCl). In the acidic region, the oxidation of TM by \( {\text{AuCl}}_{4}^{ - } \) proceeds with the formation of sulfinic acid, and gold(III) is reduced to gold(I). The interaction of gold(I) with TM at nTM/nAu?≤?1 leads to the formation of highly stable cyclic polymeric complexes \( {\text{Au}}_{m} \left( {\text{TM}} \right)_{m}^{*} \) with various degrees of protonation depending on pH. In general, the results agree with the tetrameric form of this complex proposed in the literature. At nTM/nAu?>?1, the processes of opening the cyclic structure, depolymerization and the formation of \( {\text{Au}}\left( {\text{TM}} \right)_{2}^{*} \) occur: \( {\text{Au}}_{4} ( {\text{TM)}}_{4}^{8 - } + {\text{TM}}^{3 - } \rightleftharpoons {\text{Au}}_{ 4} ( {\text{TM)}}_{5}^{11 - } \), log10 K45?=?10.1?±?0.5; 0.25 \( {\text{Au}}_{4} ( {\text{TM)}}_{4}^{8 - } + {\text{TM}}^{3 - } \rightleftharpoons {\text{Au(TM)}}_{2}^{5 - } \), log10 K12?=?4.9?±?0.2. The standard potential of \( {\text{Au(TM)}}_{2}^{5 - } \) is \( E_{1/0}^{ \circ } = -0. 2 5 5\pm 0.0 30{\text{ V}} \). The numerous protonation processes of complexes at pH?<?7 were described with the use of effective functions.  相似文献   

10.
The damped harmonic oscillator is modeled as a local mode X with mass m and frequency \(\omega _{0}\) immersed in a phonon bath with spectral density function \(j_{0}(\omega \)). This function behaves as \(\omega ^{s}\, (s= 1,2,3,\ldots )\) when \(\omega \rightarrow 0\). The limit \(\omega _{0} = 0\) represents translational (free) Brownian motion. The earlier work (Hakim and Ambegaokar in Phys Rev A 32:423, 1985) concluded that the so defined limit transition is prohibited for spectral densities with \(s<2\). In the present study we demonstrate that a specially constructed preliminary excitation changing the original bath spectrum as \(j_{0}(\omega ) \rightarrow j(\omega )\) allows for treating the free damped motion of X with no restriction for the initial spectrum dimensionality. This procedure validates the finite mass renormalization (i.e. \(m\rightarrow M\) when \(\omega _{0}\rightarrow 0)\) for the conventional bath spectra with \(s=1,2\). We show that the new spectral density \(j(\omega )\) represents the momentum bilinear interaction between mode X and the environmental modes, whereas the conventional function \(j_{0}(\omega )\) is inherent to the case of bilinear coordinate interaction in terms of the same variables. The translational damping kernel is derived based on the new spectral density.  相似文献   

11.
In this paper, we present an analytical procedure to evaluate the zero-pressure Joule–Thomson coefficient using the second virial coefficient over the Lennard-Jones (12-6) potential. The analytical expressions are derived for the first and second derivatives of the second virial coefficient. The proposed formulae guarantee the accurate and fast calculation of the Joule–Thomson coefficient. As an example of application, the analytical expression obtained is used to calculate results for the molecules He, Xe, \(N_2 \), \(H_2 \), \(O_2 \), \({\textit{CO}}\), \(C_2 H_4 \), \(C_3 H_8 \) and \(C_5 H_{12} \). The results obtained by the present analytical expression are found to be in good agreement with the data in the literature. The calculation of results will help to estimate the Joule–Thomson coefficient with sufficient reliability and to determine the interaction potentials.  相似文献   

12.
For at least forty years, there has been an interest to correlate the structure of plasma polymer coatings with fabrication parameters during deposition, most particularly with the energy input per monomer molecule, \( E_{\text{m}} \). In our two laboratories, we have developed methods for measuring \( E_{\text{m}} \) (or somewhat equivalent activation energy, \( E_{\text{a}} \)) in low- (LP) and atmospheric-pressure (AP) discharge plasmas. We earlier proposed energy conversion efficiency, ECE, as a new parameter which permits direct comparison of LP and AP experiments. This is done here for the case of a much-studied organosilicon precursor (monomer), hexamethyl-disiloxane. “Critical” \( E_{\text{m}} \) (or \( E_{\text{a}} \)) values that demarcate ECE regimes separating different fragmentation/reaction mechanisms are found to agree remarkably well, and to correlate with specific mechanisms. Furthermore, deposition rates, and structural (for example, “organic/inorganic” content ratio) characteristics are seen to display very similar behaviors, despite additional drastically differing fabrication conditions like pure or highly diluted (in Ar carrier gas) monomer feed in the LP and AP cases, respectively.  相似文献   

13.
Densities, ρ, and speeds of sound, u, for the binary liquid mixtures of 1,4-butanediol (1,4-BD) + 2-alkoxyethanols {2-methoxyethanol (2-ME), or 2-propoxyethanol (2-PE)} over the whole composition range have been measured at T = (303.15, 308.15, 313.15 and 318.15) K, and at atmospheric pressure (p = 0.1 kPa). Experimental data for the densities and speeds of sound have been used to derive the quantities like excess molar volume, \( V_{\text{m}}^{\text{E}} \), excess isentropic compressibility, \( \kappa_{S}^{\text{E}} \), excess molar isentropic compressibility, \( K_{{S,{\text{m}}}}^{\text{E}} \), excess speed of sound, \( u^{\text{E}} \), and excess isobaric thermal expansion \( \alpha_{p}^{\text{E}} \). These excess parameters were correlated by Redlich–Kister polynomials. Excess partial molar volumes (\( \bar{V}_{\text{m,1}}^{\text{E}} \) and \( \bar{V}_{\text{m,2}}^{\text{E}} \)) and their limiting values at infinite dilution (\( \bar{V}_{\text{m,1}}^{{ 0 {\text{E}}}} \) and \( {\bar{\text{V}}}_{\text{m,2}}^{{ 0 {\text{E}}}} \)) have been calculated from the experimental density measurements and were analytically obtained using the Redlich–Kister polynomials. The results are discussed in terms of intermolecular interactions and their dependence on composition and temperature.  相似文献   

14.
Nicotinic acid (also known as niacin) was recrystallized from anhydrous ethanol. X-ray crystallography was applied to characterize its crystal structure. The crystal belongs to the monoclinic system, space group P2(1)/c. The crystal cell parameters are a = 0.71401(4) nm, b = 1.16195(7) nm, c = 0.71974(6) nm, α = 90°, β = 113.514(3)°, γ = 90° and Z = 4. Molar enthalpies of dissolution of the compound, at different molalities m/(mol·kg?1) were measured with an isoperibol solution–reaction calorimeter at T = 298.15 K. The molar enthalpy of solution at infinite dilution was calculated, according to Pitzer’s electrolyte solution model and found to be \( \Delta_{\text{sol}} H_{m}^{\infty } = ( 2 7. 3 \pm 0. 2) \) kJ·mol?1 and Pitzer’s parameters (\( \beta_{{\text{MX}}}^{{\text{(0)}L}} \), \( \beta_{{\text{MX}}}^{{\text{(1)}L}} \) and \( C_{{\text{MX}}}^{\phi L} \)) were obtained. The values of apparent relative molar enthalpies (\( {}^{\phi }L \)) and relative partial molar enthalpies (\( \overline{{L_{2} }} \) and \( \overline{{L_{1} }} \)) of the solute and the solvent at different molalities were derived from the experimental enthalpy of dissolution values of the compound. Also, the standard molar enthalpy of formation of the anion \( {\text{C}}_{ 6} {\text{H}}_{ 4} \text{NO}_{2}^{-} \) in aqueous solution was calculated to be \( {\Delta_{\text{f}}^{} H}_{\text{m}}^{\text{o}} ({\text{C}}_{ 6} {\text{H}}_{ 4} {\text{NO}}_{2}^{-} \text{,aq}) = - \left( {603.2 \pm 1.2} \right)\;{\text{kJ}}{\cdot}{\text{mol}}^{-1} \).  相似文献   

15.
Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of diphenyl-N-butylcarbamoylmethyl phosphine oxide (DPBCMPO, L) has been investigated. The equilibrium data have been explained assuming that the species HL+, \( {\text{HL}}_{2}^{ + } \), \( {\text{ML}}_{2}^{2 + } \), \( {\text{ML}}_{3}^{2 + } \) and \( {\text{ML}}_{4}^{2 + } \) (M2+ = Ca2+, Sr2+) are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined. In the considered nitrobenzene medium, it was found that the stability of the \( {\text{SrL}}_{2,{\text{org}}}^{2 + } \) complex is somewhat higher than that of species \( {\text{CaL}}_{2,{\text{org}}}^{2 + } \), while the stability constants of the remaining strontium complexes \( {\text{SrL}}_{3,{\text{org}}}^{2 + } \) and \( {\text{SrL}}_{4,{\text{org}}}^{2 + } \) are smaller than those of the corresponding complex species \( {\text{CaL}}_{n}^{2 + } \) (n = 3, 4).  相似文献   

16.
The kinetics of base hydrolysis of tris(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II), \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) has been studied in aqueous, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) media at 25, 35 and 45 °C under pseudo-first-order conditions, i.e. \( [ {\text{OH}}^{ - } ]\gg [{\text{Fe(PDT)}}_{ 3}^{2 + } ] \). The reactions are first order in both of substrate \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) and hydroxide ion. The rates decrease with increasing ionic strength in aqueous and CTAB media, whereas SDS medium shows little ionic strength effect. The rate also increases with CTAB concentration but decreases with SDS. The specific rate constant, k and thermodynamic parameters (E a, ΔH #, ΔS # and ΔG #) have also been evaluated. The near equal values of ΔG # obtained in aqueous and CTAB media suggest that these reactions occur essentially by the same mechanism such that \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) reacts with OH? in the rate-determining step. The ionic strength effect in SDS medium suggests that the rate-determining step involves an ion and a neutral species. The results in this study are compared with those obtained for other iron(II)-bipyridine complexes.  相似文献   

17.
In this article, we give sharp bounds on the Hosoya index and the Merrifield–Simmons index for connected graphs of fixed size. As a consequence, we determine all connected graphs of any fixed order and size which maximize the Merrifield–Simmons index. Sharp lower bounds on the Hosoya index are known for graphs of order n and size \(m\in [n-1,2n-3]\cup \left( {n-1\atopwithdelims ()2},{n\atopwithdelims ()2}\right] \); while sharp upper bounds were only known for graphs of order n and size \(m\le n+2\). We give sharp upper bounds on the Hosoya index for dense graphs with \(m\ge {n\atopwithdelims ()2}-2n/3\). Moreover, all extreme graphs are also determined.  相似文献   

18.
Densities, ρ, and viscosities, η, of pure isobutanol, 1-amino-2-propanol, and 1-propanol, along with their binary mixtures of {x 1isobutanol + x 21-propanol}, {x 11-amino-2-propanol + x 21-propanol}, and {x 11-amino-2-propanol + x 2isobutanol} were measured over the entire composition range and at temperatures (293.15–333.15) K at ambient pressure (81.5 kPa). Excess molar properties such as the excess molar volume, V m E , partial molar volumes, \( \bar{V}_{1} \) and \( \bar{V}_{2} \), excess partial molar volumes, \( \bar{V}_{1}^{\text{E}} \) and \( \bar{V}_{2}^{\text{E}} \), thermal expansion coefficient, α, excess thermal expansion coefficient, α E, viscosity deviation, Δη, and the excess Gibbs energy of activation, ?G E*, for the binary mixtures were calculated from the experimental values of densities and viscosities. The excess values of the binary mixtures are negative in the entire composition range and at all temperatures, and increase with increasing temperature. Viscosity deviations, Δη, are negative over the entire composition range and decrease with increasing temperature. The viscosities of the mixtures were correlated by the models of McAllister, Heric, Hind, Katti, and Nissan. The obtained data were correlated by Redlich–Kister equation and the fitting parameters and standard deviations were determined.  相似文献   

19.
The recursive series \(f_{n+1} =l\cdot f_n +m\cdot f_{n-1} \) (l, m = 1,2,3...) defines the generators of a chain of components L and S, \(\left\{ {\begin{array}{l} L\rightarrow \underbrace{LL{\ldots }L}_l\underbrace{SS{\ldots }S}_m \\ S\rightarrow L \\ \end{array}} \right\} \), such that L and S have a geometric dimension equal to \(d = 0, 1, 2, 3,{\ldots }\). If L, S are the atoms of two different elements A, B (dimension \(d = 0\)) or two self-similar structures with \(d > 0\) that are composed of these elements, then such a generator forms a self-similar binary structure with the dimension \(d+1\) (a quasicrystal), composed of \(\hbox {A}_{x^{\prime }}\hbox {B}\), where \(x^{\prime }\) depends solely on the parameters l and m. In this study, the stoichiometric coefficient \(x^{\prime }\) was calculated for about 20 of such quasicrystals. The generator was found to enable, for certain values of l and m, the formation of structures with degenerate symmetry, that is, the transition from self-similar to translational symmetry. Thus, the generated structures can be divided according to l and m into three groups: structures that contain only one type of homobonds, A–A, with self-similarity as the only permissible symmetry; structures that at least sometimes contain both types of homobonds, A–A and B–B, with self-similarity as the only permissible symmetry; and structures that sometimes show translational symmetry. All of the researched structures in the first group have the same estimated values of internal energy and configuration entropy determined by the isotopic composition. All structures in the second group have the same configuration entropy but different internal energies. In the third group, the configuration entropy of structures that show translational symmetry is lower than that of the self-similar structures. On the other hand, internal energy favours (that is, is lower in) structures with translational symmetry over self-similar structures only when the energy of the A–B bonds is higher than the mean energy of A–A and B–B bonds. In other words, self-similar systems can be energetically more stable compared to crystals as long as the energy of the A–B heterobonds is low. The method for generating self-similar objects proposed in this paper seems to be the first method in which the means of generation do not change with the geometric dimension d of the generated structure.  相似文献   

20.
Single crystals of CsNbMoO6 were grown from solution in melt, and their crystal structure was solved by X-ray diffraction (R[I > 2σ(I)]1 = 0.0386). Crystals were cubic, а = 10.41039(8) Å, Z = 8, space group \(F\bar 43m\). The synthesized crystals were shown to exhibit the second harmonic generation effect, which confirmed the absence of an inversion center in the structure. The structure was built of MO6 (M = Nb, Mo) octahedra, which share all vertices to form a three-dimensional framework where niobium and molybdenum atoms are randomly distributed. Framework interstices accommodate cesium ions. Crystals of CsNbMoO6 can be considered as pseudo-symmetric with respect to space group \(Fd\bar 3m\) due to a small shift of some oxygen atoms relative to the regular system of points in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号