共查询到5条相似文献,搜索用时 0 毫秒
1.
A facile method using polystyrene‐b‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) micelles is demonstrated to synthesize N/FeN4‐doped hollow carbon nanospheres (N/FeN4‐CHNS) with high electrocatalytic activity for oxygen reduction reactions (ORRs). Uniform spherical micelles with PS core and P4VP shell are prepared by exposing PS‐b‐P4VP in a mixture of ethanol/tetrahydrofuran. Pyridinic N in shell cooperates with Fe3+ to induce an in situ polymerization of pyrrole. Tuning molecular composition of PS‐b‐P4VP can form hollow carbon spheres with controlled size down to sub‐100 nm that remains challenge using traditional hard template strategies. N/FeN4‐CHNS possesses a series of desirable properties as electrode materials, including easy fabrication, high reproducibility, large surface area, and highly accessible porous surface. This electrocatalyst exhibits excellent ORR activity (onset potential of 0.976 V vs reversible hydrogen electrode (RHE) and half‐wave potential of 0.852 V vs RHE), higher than that of commercial Pt/C (20 wt%) in an alkaline media, and shows a good activity in an acidic media as well. In addition to its higher stability and methanol tolerance than Pt/C in both alkaline and acidic electrolytes, highly competitive single cell performance is achieved in a proton exchange membrane fuel cell. This work provides a general approach to preparing functionalized small hollow nanospheres based on self‐assembly of block copolymers. 相似文献
2.
Co9S8 Nanoparticles Incorporated in Hierarchically Porous 3D Few‐Layer Graphene‐Like Carbon with S,N‐Doping as Superior Electrocatalyst for Oxygen Reduction Reaction 下载免费PDF全文
Electrochemical oxygen reduction reaction (ORR), using nonprecious metal catalysts, has attracted great attention due to the importance in renewable energy technologies, such as fuel cells and metal–air batteries. A simple and scalable synthetic route is demonstrated for the preparation of a novel 3D hybrid nanocatalyst consisting of Co9S8 nanoparticles which are incorporated in N,S‐doped carbon (N, S–C) with rational structure design. In particular, the hybrid catalyst is prepared by direct pyrolysis and calcination of a gel mixture of Mg,Co nitrate‐thiourea‐glycine under Ar atmosphere, with subsequent HCl washing. The properties of obtained hybrid catalyst are quite dependent on calcination temperature and added glycine amount. Under a molar ratio of Co5‐Mg15‐tu10‐gl45 and a calcination temperature of 900 °C, Co9S8 nanoparticles are embedded in a well‐developed carbon matrix which shows a porous 3D few‐layer graphene‐like N, S–C with open and hierarchical micro–meso–macro pore structure. Because of the synergistic effect between Co9S8 nanoparticles and well‐developed carbon support, the composite exhibits high ORR activity close to that of commercial Pt/C catalyst. More importantly, the composite displays superior long‐term stability and good tolerance against methanol. The strategy developed here provides a novel and efficient approach to prepare a cost‐effective and highly active ORR electrocatalyst. 相似文献
3.
Min Xu Hong Chen Yufei Zhao Wei Ni Mingquan Liu Yifei Xue Silu Huo Linlin Wu Zhiyu Yang Yi‐Ming Yan 《Particle & Particle Systems Characterization》2019,36(7)
Structure engineering is an effective strategy to enhance the performance of electrocatalysts for the formic acid oxidation reaction. However, it remains a challenge to prepare a highly active electrocatalyst based on a distinct understanding of its structure‐dependent performance. The design and synthesis of ultrathin‐carbon‐layer‐protected PtCu nanoparticles (NPs) encapsulated in a N‐doped carbon capsule (PtCu@NCC) is reported. This system is fabricated by using Zn‐based metal–organic frameworks as the carbon support source and metal‐containing tannic acid as the protecting shell template. It displays 9.8‐ and 9.6‐fold enhancements in mass activity and specific activity compared to commercial Pt/C. Moreover, a constructed direct formic acid fuel cell using PtCu@NCC as the anodic electrocatalyst delivers a maximum power density of 121 mW cm?2. Significantly, PtCu@NCC exhibits superior structural stability and catalytic durability in both half‐cell and full‐cell tests. A mechanism study reveals that the enhanced activity is partially attributed to facilitated electro‐oxidation kinetics of formic acid in the unique structure of PtCu@NCC, while the excellent durability stems from the “protecting effect” of the in‐situ‐formed ultrathin carbon layer on the surface of the PtCu NPs. This work opens a new avenue for the development of high‐performance electrocatalysts for fuel‐cell applications by offering essential insights into the structure–performance relationship of the materials. 相似文献
4.
Shuyan Gao Hao Fan Xianjun Wei Liang Li Yoshio Bando Dmitri Golberg 《Particle & Particle Systems Characterization》2013,30(10):864-872
Electrocatalysts for the oxygen reduction reaction (ORR) present some of the most challenging vulnerability issues reducing ORR performance and shortening their practical lifetime. Fuel crossover resistance, selective activity, and catalytic stability of ORR catalysts are still to be addressed. Here, a facile and in situ template‐free synthesis of Pt‐containing mesoporous nitrogen‐doped carbon composites (Pt‐m‐N‐C) is designed and specifically developed to overcome its drawback as an electrocatalyst for ORR, while its high activity is sustained. The as‐prepared Pt‐m‐N‐C catalyst exhibits high electrocatalytic activity, dominant four‐electron oxygen reduction pathway, superior stability, fuel crossover resistance, and selective activity to a commercial Pt/C catalyst in 0.1 m KOH aqueous solution. Such excellent performance benefits from in situ covalent incorporation of Pt nanoparticles with optimal size into N‐doped carbon support, dense active catalytic sites on surface, excellent electrical contacts between the catalytic sites and the electron‐conducting host, and a favorable mesoporous structure for the stabilization of the Pt nanoparticles by pore confinement and diffusion of oxygen molecules. 相似文献