共查询到20条相似文献,搜索用时 15 毫秒
1.
Cruz A Vázquez L Vélez M Pérez-Gil J 《Langmuir : the ACS journal of surfaces and colloids》2005,21(12):5349-5355
Monolayers of dipalmitoylphosphatidylcholine (DPPC), both in the absence and in the presence of 1% (mol/mol) of a fluorescent phospholipid probe, have been spread at the air-liquid interface of a surface balance, compressed up to pressures in the liquid-expanded/liquid-condensed plateau of the isotherm, transferred onto mica supports, and analyzed by scanning force microscopy (SFM). Supported DPPC films showed micrometer-sized condensed domains with morphology and size that were entirely analogous to those observed in situ at the air-liquid interface by epifluorescence microscopy. The analysis by SFM, however, allowed the study and comparison of monolayers in the absence and in the presence of the fluorescent marker. This analysis revealed that the presence of dye reduced by 10-20% the total amount of the liquid-condensed phase in the DPPC films. The presence of the dye also decreased the mechanical stability of the film and increased the time required for the monolayer to equilibrate. The resolution of SFM permitted the determination that the structures of both the liquid-expanded and the liquid-condensed regions of DPPC films were heterogeneous at the nanometer scale. Liquid-condensed DPPC microdomains contained nanoholes covering 4-8% of their area whereas 60-80% of the surface detected as liquid-expanded by fluorescence microscopy consisted of a condensed-like framework of nanodomains. The total area, the shape of the nanodomains, and their interconnectivity were affected by the presence of the probe, suggesting that care must be taken when studying the structure, especially at the nanometer scale, and properties of model lipid films in the presence of extrinsic probes. 相似文献
2.
We demonstrate here that a nitrile-derivatized phenylalanine residue, p-cyanophenylalanine (Phe(CN)), and tryptophan (Trp) constitute a novel donor-acceptor pair for fluorescence resonance energy transfer (FRET). The F?rster distance of this FRET pair was determined to be approximately 16 A and hence is well suited for determining relatively short separation distances. To validate the applicability of this FRET pair in conformational studies, we studied the conformational heterogeneity of a 14-residue amphipathic peptide, Mastoparan X (MPx peptide), in water and 7 M urea solution as well as at different temperatures. Specifically, seven nitrile-derivatized mutants of the MPx peptide, each containing a Phe(CN) residue that replaces different positions along the peptide sequence (i.e., from position 5 to 11) and serves as a resonance energy donor to the native Trp residue at position 3, were studied spectroscopically. The FRET efficiencies obtained from these peptides allowed us to gain a global picture regarding the conformational distribution of the MPx peptide in different environments. Our results suggest that the MPx molecules exist in water as an ensemble of rather compact conformations, with a radius of gyration of approximately 4.2 A, whereas in 7 M urea the radius of gyration increases to approximately 6.5 A, indicating that the peptide conformations become more extended under this condition. However, we found that temperature had only a negligible effect on the size of the MPx peptide, underlining the difference between the thermally and chemically denatured states of polypeptides. The application of the Gaussian chain or the wormlike chain model allowed us to further obtain the probability distribution function of the separation distance between any two residues along the peptide sequence. We found that the effective bond length of the MPx peptide, obtained by using the Gaussian chain model, is 2.78 A in water and 4.28 A in 7 M urea. 相似文献
3.
4.
We here report a novel fluorescent method for the detection of melamine based on the high fluorescence quenching ability of gold nanoparticles. The fluorescence was significantly quenched via fluorescence resonance energy transfer when fluorescein molecules were attached to the surface of gold nanoparticles by electrostatic interaction. Upon addition of melamine, the fluorescence was enhanced due to the competitive adsorption of gold nanoparticles between melamine and fluorescein. Under the optimum conditions, the fluorescence enhancement efficiency [(I-I(0))/I(0)] showed a linear relationship with the concentration of melamine in the range of 1.0 × 10(-7) mol L(-1)~4.0 × 10(-6) mol L(-1), and the detection limit was calculated to be 1.0 × 10(-9) mol L(-1). The proposed method showed several advantages such as high sensitivity, short analysis time, low cost and ease of operation. 相似文献
5.
We introduce a sensitive, rapid, label-free and general fluorescent method for the determination of tartrazine by competitive binding to reduced graphene oxide (rGO) against fluorescein, and the fluorescence recovery upon fluorescein desorption from rGO provides a quantitative readout for tartrazine, giving a detection limit of 0.53 ng mL(-1). 相似文献
6.
Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot 总被引:2,自引:0,他引:2
Nagasaki Y Ishii T Sunaga Y Watanabe Y Otsuka H Kataoka K 《Langmuir : the ACS journal of surfaces and colloids》2004,20(15):6396-6400
A novel functionally PEGylated quantum dot (QD) was prepared by a coprecipitation method in the presence of the biotin-PEG/polyamine block copolymer. When CdCl2 and Na2S were mixed in aqueous media in the presence of the biotin-PEG-b-poly(2-(N,N-dimethylamino)ethyl methacrylate) [biotin-PEG/PAMA], a CdS QD with a size of ca. 5 nm was prepared. The polyamine segment was anchored on the surface of the formed CdS nanoparticle, whereas the PEG segment was tethered on the surface to form a hydrophilic palisade, thus improving the dispersion stability in aqueous media even under a high salt concentration condition. An effective fluorescent resonance energy transfer (FRET) was observed by the specific interaction of the biotin-PEG/PAMA stabilized CdS QD with TexasRed-labeled streptavidin of the physiological ionic strength of 0.15 M. The extent of the energy transfer was in proportion to the concentration of the TexasRed-streptavidin. This FRET system using the PEGylated CdS QD coupled with fluorescent-labeled protein can be utilized as a highly sensitive bioanalytical system. 相似文献
7.
Rindermann JJ Akhtman Y Richardson J Brown T Lagoudakis PG 《Journal of the American Chemical Society》2011,133(2):279-285
Intramolecular distances in proteins and other biomolecules can be studied in living cells by means of fluorescence resonance energy transfer (FRET) in steady-state or pulsed-excitation experiments. The major uncertainty originates from the unknown orientation between the optical dipole moments of the fluorescent markers, especially when the molecule undergoes thermal fluctuations in physiological conditions. We introduce a statistical method based on the von Mises-Fisher distribution for the interpretation of fluorescence decay dynamics in donor-acceptor FRET pairs that allows us to retrieve both the orientation and the extent of directional fluctuations of the involved dipole moments. We verify the method by applying it to donor-acceptor pairs controllably attached to DNA helices and find that common assumptions such as complete rotational freedom or fully hindered rotation of the dipoles fail a physical interpretation of the fluorescence decay dynamics. This methodology is applicable in single-molecule and ensemble measurements of FRET to derive more accurate distance estimates from optical experiments, without the need for more complex and expensive NMR studies. 相似文献
8.
Masahiro Miura 《Analytica chimica acta》2004,501(1):45-54
A novel fluorescent probe for metal cations, which has a large Stokes shift, was synthesized from the reaction of N-(3-carboxy-2-naphthyl)-ethylenediamine-N,N′,N′-triacetic acid (CNEDTA) with 4-(N,N-dimethylaminosulfonyl)-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DBD-ED). The large Stokes shift is due to the FRET phenomenon between a donor (CNEDTA) and an acceptor (DBD-ED) fluorophore. When the fluorescent probe, DBD-ED-CNEDTA, was excited at 240, 340 and 440 nm, an emission maximum was observed only at 560 nm. However, the fluorescence (FL) at 480 nm, based upon the CNEDTA moiety, was not detected with excitation at 340 nm. The FL intensity of DBD-ED-CNEDTA was dependent upon the acidity of the medium and highest at pH 4.1. DBD-ED-CNEDTA reacted with metal cations, i.e., Zn, Cd, Al, Y, and La, in aqueous medium to form chelates. The spectral change of FL excitation and emission was small before and after the addition of the metal ions. However, the FL intensity was dependent upon the concentrations of the metal ions. In the case of Zn2+, the molar ratio bound with DBD-ED-CNEDTA was calculated as 1:1. The FL intensities after chelate formation of Zn/DBD-ED-CNEDTA (1:1) were enhanced by 3.8-fold (excitation at 340 nm, emission at 560 nm), 4.2-fold (excitation at 440 nm, emission at 560 nm), and 5.9-fold (excitation at 240 nm, emission at 560 nm), respectively. The FL probe was applied to the determination of Zn in a food supplement. 相似文献
9.
Macrocyclization of synthetic peptides by thioesterase (TE) domains excised from nonribosomal peptide synthetases (NRPS) has been limited to peptides that contain TE-specific recognition elements. To alter substrate specificity of these enzymes by evolution efforts, macrocyclization has to be detected under high-throughput conditions. Here we describe a method to selectively detect cyclic peptides by fluorescence resonance energy transfer (FRET). Using this method, picomolar detection limits were easily realized, providing novel entry for kinetic studies of catalyzed macrocyclization. Application of this method also provides an ideal tool to track TE-mediated peptide cyclization in real time. The general utility of FRET-assisted detection of cyclopeptides was demonstrated for two cyclases, namely tyrocidine (Tyc) TE and calcium-dependent antibiotic (CDA) TE. For the latter cyclase, this approach was combined with site-directed affinity labeling, opening the possibility for high-throughput enzymatic screening. 相似文献
10.
We describe a two-dimensional (2D), four-color fluorescence resonance energy transfer (FRET) scheme, in which the conformational dynamics of a protein is followed by simultaneously observing the FRET signal from two different donor-acceptor pairs. For a general class of models that assume Markovian conformational dynamics, we relate the properties of the emission correlation functions to the rates of elementary kinetic steps in the model. We further use a toy folding model that treats proteins as chains with breakable cross-links to examine the relationship between the cooperativity of folding and FRET data and to establish what additional information about the folding dynamics can be gleaned from 2D, as opposed to one-dimensional FRET experiments. We finally discuss the potential advantages of the four-color FRET over the three-color FRET technique. 相似文献
11.
Ultrafast fluorescence resonance energy transfer (FRET) in a catanionic [sodium dodecyl sulfate (SDS)-dodecyltrimethyl ammonium bromide (DTAB)] vesicle is studied by femtosecond up-conversion. The vesicles (diameter ~400 nm for SDS-rich and ~250 nm for DTAB-rich vesicles) are much larger than the SDS and DTAB micelles (diameter ~4 nm). In both micelle and vesicles, FRET occurs in multiple time scales and the time scales of FRET correspond to a donor-acceptor distance varying between 12 and 36 A?. 相似文献
12.
Liu TC Zhang HL Wang JH Wang HQ Zhang ZH Hua XF Cao YC Luo QM Zhao YD 《Analytical and bioanalytical chemistry》2008,391(8):2819-2824
Mouse anti-human CD71 monoclonal antibody (anti-CD71) was conjugated with red quantum dots (QDs; 5.3 nm, emission wavelength
λ
em = 614 nm) and used to label HeLa cells successfully. Then green QD-labeled goat anti-mouse immunoglobulin G (IgG; the size
of the green QDs was 2.2 nm; λ
em = 544 nm) was added to bind the red-QD-conjugated anti-CD71 on the cell surface by immunoreactions. Such interaction between
anti-CD71 and IgG lasted 4 min and was observed from the fluorescence spectra: the fluorescence intensity of the “red” peak
at 614 nm increased by 32%; meanwhile that of the “green” one at 544 nm decreased by 55%. The ratio of the fluorescence intensities
(I
544 nm/I
614 nm) decreased from 0.5 to 0.2. The fluorescence spectra as well as cell imaging showed that fluorescence resonance energy transfer
took place between these two kinds of QDs on the HeLa cells through interactions between the primary antibody and the secondary
antibody. 相似文献
13.
Salam A 《The Journal of chemical physics》2012,136(1):014509
The influence of a third molecule on the rate of resonance energy transfer is studied using diagrammatic perturbation theory within the framework of molecular quantum electrodynamics. Two distinct mechanisms are identified. One corresponds to direct transfer between donor and acceptor while the other involves relay of energy by the third species. Fermi Golden rule transition rates valid for all separation distances beyond wave function overlap are evaluated for these two processes as well as for the interference term between direct and indirect exchange, thereby extending previous work which was limited to the near-zone only. Short- and long-range limits are also obtained in each case. It is found that in the near-zone the indirect rate contribution exhibits inverse sixth power dependence on relative distances of emitter and absorber relative to the third body, in contrast to its far-zone counterpart, which exhibits inverse square behavior. The interference term, however, displays inverse cubic dependence on all three distance vectors at short-range and inverse behavior in the far-zone. Interestingly, for a collinear arrangement of the three molecules in the near-zone, the interference term is negative, reducing the overall rate of energy transfer. The results obtained are interpreted in terms of microscopic and macroscopic pictures of transfer occurring within a surrounding medium. 相似文献
14.
A novel dark resonance energy transfer (DRET) off–on cassette SR1 was constructed by coupling a silole donor with a rhodamine acceptor. Due to the intramolecular rotations of the phenyl rings, the silole fluorophore served as a dark donor in solution state and fluorescence leakage from the donor emission could be avoided. Binding with Sn4+ ion induced the ring‐opening of the rhodamine acceptor, thus increase the overlapping between the emission spectra of the donor and absorption spectra of the acceptor. DRET was turned on and energy was transferred from the silole donor to the rhodamine acceptor. Emission from the rhodamine acceptor was achieved with a large Stokes shift up to 198 nm. The sensor showed good sensitivity and selectivity towards Sn4+ to other metal ions in methanol aqueous solution through the formation of a 1:1 complex between SR1 and Sn4+. This research provides a new approach for the development of rhodamine‐based sensors towards metal ions with large Stokes shifts. 相似文献
15.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection. 相似文献
16.
在胶束形成前染料分子的能量转移与预胶束基本性质的研究 总被引:7,自引:0,他引:7
本工作对罗丹明6G(1)与罗丹明-B(2)两种染料在十二烷基硫酸钠(SLS)溶液中的能量转移进行了研究。当SLS浓度远低于它的cmc值时可明显地观察到两种染料间的能量转移, 说明在此浓度下SLS的预胶束已生成。以Ia/(Id+Ia)值表示两种染料分子间能量转移的效率, 在SLS浓度增长过程中, 存在着一个效率的极大值。当溶剂水中加入不同量的DMSO时, 发现效率极大值移向SLS的高浓度处。这一结果表明:分子间的疏水作用力是SLS分子形成预胶束的推动力。 相似文献
17.
18.
This study considered the possibility of proton transfer reactions through the peptide bond under different environments using
the dipeptide and the 12-mer polyglycine α-helix models, in which diglycine is substituted by the 12-mer polyglycine helix. Ab initio molecular orbital calculations
were carried out at the B3LYP/6-31+G(d) level of theory. To evaluate the free energies in solution, calculations of the solvation
energies were performed using PCM. The correction functions on the calculated solvation energies were provided to reproduce
experimental pKa values. The proton transfer reactions through the peptide bond are concluded to be possible in the protein
for a wide range of proton acceptors. His complex has two free energy minima along a putative proton transfer pathway in spite
of one minimum in the other complexes. The α-helix is estimated to suppress the proton transfer reactions through the peptide bond at the termini of the helix, although
it is possible to proceed when the proton affinity of the acceptor is low.
Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue. 相似文献
19.
Myelin basic protein (MBP) is the major extrinsic protein of the myelin sheath in the central nervous system. It is this protein that is destroyed in such demyelinating diseases as multiple sclerosis. We have examined the predicted structures of one segment of MBP using the molecular mechanics program ECEPP83 developed by Scheraga and co-workers as modified by Chuman, Momany, and Schafer. We have focused upon a segment, 87-118, containing the Pro-Pro-Pro sequence (residues 100–102), which has been predicted from standard algorithms to exist in a hairpin loop connecting anti-parallel beta-strands. Several local energy minima have been found and reported. Tripoline sequences are not rare in proteins, but their structure and function is still uncertain. 相似文献