首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lateral membrane organization and phase behavior of the lipid mixture DMPC(di-C(14))/DSPC(di-C(18))/cholesterol (0-33 mol %) with and without an incorporated fluorescence-labeled palmitoyl/farnesyl dual-lipidated peptide, BODIPY-Gly-Cys(Pal)-Met-Gly-Leu-Pro-Cys(Far)-OMe, which represents a membrane recognition model system for Ras proteins, was studied by two-photon excitation fluorescence microscopy. Measurements were performed on giant unilamellar vesicles (GUVs) over a large temperature range, ranging from 30 to 80 degrees C to cover different lipid phase states (all-gel, fluid/gel, liquid-ordered, all-fluid). At temperatures where the fluid-gel coexistence region of the pure binary phospholipid system occurs, large-scale concentration fluctuations appear. Incorporation of cholesterol levels up to 33 mol % leads to a significant increase of conformational order in the membrane system and a reduction of large domain structures. Adding the peptide leads to dramatic changes in the lateral organization of the membrane. With cholesterol present, a phase separation is induced by a lipid sorting mechanism owing to the high affinity of the lipidated peptide to a fluid, DMPC-rich environment. This phase separation leads to the formation of peptide-containing domains with high fluorescence intensity that become progressively smaller with decreasing temperature. As a result, the local concentration of the peptide increases steadily within the confines of the shrinking domains. At the lowest temperatures, where the acyl-chain order parameter of the membrane has already drastically increased and the membrane achieves a liquid-ordered character, an efficient lipid sorting mechanism is no longer supported and aggregation of the peptide into small clusters prevails. We can conclude that palmitoyl/farnesyl dual-lipidated peptides do not associate with liquid-ordered or gel-like domains in phase-separated bilayer membranes. In particular, the study shows the interesting ability of the peptide to induce formation of fluid microdomains at physiologically relevant cholesterol concentrations, and this effect very much depends on the concentration of fluid vs ordered lipid molecules.  相似文献   

2.
The fluorescence resonance energy transfer (FRET) in a lipid bilayer system containing two different donors and one common acceptor at below and above transition temperature has been studied and all the FRET parameters are analyzed using steady state and time-resolved fluorescence spectroscopy. Using dynamic light scattering measurement, we have followed the process of preparation of small unilamellar vesicles, and by following the FRET parameters of C-153-Rh6G and C-151-Rh6G pairs inside SUVs at 16 °C and 33 °C (T(m) = 23.9 °C) we have noticed that there is greater effect of temperature on the FRET parameters in case of the C-153-Rh6G pair than that of the C-151-Rh6G pair. Finally we have concluded that this difference is due to their different location inside the lipid bilayer in which fluidity of the long alkyl chain markedly affects the FRET parameters for C-153-Rh6G pair embedded inside a small unilamellar vesicle of size 20-50 nm.  相似文献   

3.
A novel technique called the "lipid-coated ice droplet hydration method" is presented for the preparation of giant vesicles with a controlled size between 4 and 20 microm and entrapment yields for water-soluble molecules of up to about 30%. The method consists of three main steps. In the first step, a monodisperse water-in-oil emulsion with a predetermined average droplet diameter between 4 and 20 microm is prepared by microchannel emulsification, using sorbitan monooleate (Span 80) and stearylamine as emulsifiers and hexane as oil. In the second step, the water droplets of the emulsion are frozen and separated from the supernatant hexane solution by precipitation, followed by a removal of the supernatant and followed by the replacement of Span 80 by using a hexane solution containing egg yolk phosphatidylcholine, cholesterol, and stearylamine (5:5:1, molar ratio). This procedure is performed at -10 degrees C to keep the water droplets of the emulsion in a frozen state and thereby to avoid extensive water droplet coalescence. In the third step, hexane is evaporated at -4 to -7 degrees C and an external water phase is added to the remaining mixture of lipids and water droplets to form giant vesicles that have an average size in the range of that of the initial emulsion droplets (4-20 microm). The entrapment yield and the lamellarity of the vesicles obtained depend on the lipid/water droplet ratio and on the composition of the external water phase. At high lipid/water droplet ratio, the giant vesicles have a thicker membrane (indicating multilamellarity) and a higher entrapment yield than in the case of a low lipid/water droplet ratio. The highest entrapment yield ( approximately 35%) is obtained if the added external water phase contains preformed unilamellar egg phosphatidylcholine vesicles with an average diameter of 50 nm. The addition of these small vesicles minimizes the water droplet coalescence during the third step of the vesicle preparation, thereby decreasing the extent of release of water-soluble molecules originally present in the water droplets. The GVs prepared can be extruded through polycarbonate membranes to yield large unilamellar vesicles with about 100 nm diameter. This size reduction, however, leads to a decrease in the entrapment yield to about 12% due to solute leakage from the vesicles during the extrusion process.  相似文献   

4.
The fluorescence quenching of 6-propionyl-2-dimethylaminonaphtalene (PRODAN) and 6-dodecanoyl-2-dimethylaminonaphtalene (LAURDAN) by octadecyl rhodamine B (ORB) in a model system of small unilamellar vesicles (SUV) of dipalmitoylphosphatidyl-choline (DPPC) was investigated. Non-linear Stern-Volmer behaviour was observed in both systems in the gel phase (25 degrees C) and in the fluid phase (50 degrees C), resulting from association processes and from static quenching. The relative quenching efficiencies of both dyes depend on the phase state of the bilayer and indicate a deeper incorporation of PRODAN and LAURDAN into the membrane in its fluid phase than in its gel phase.  相似文献   

5.
Depending on their hydrophobicity, peptides can interact differently with lipid membranes inducing dramatic modifications into their host systems. In the present paper, the interaction of a synthetic peptide with a scrambled hydrophobic/hydrophilic sequence (Pro-Asp-Ala-Asp-Ala-His-Ala-His-Ala-His-Ala-Ala-Ala-His-Gly) (PADH) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membranes has been investigated by differential scanning calorimetry (DSC), adopting three different experimental approaches. In the first, the peptide is forced to be included into the hydrocarbon region of the lipid bilayer, by codissolving it with the lipid giving rise to mixed multilamellar vesicles–peptide systems; in the second, this system is passed through an extruder, thus producing large unilamellar vesicles–peptide systems; in the third, it is allowed to interact with the external surface of the membrane.

The whole of the DSC results obtained have shown that the incorporation of the peptide into the lipid bilayer by means of the first method induces a decrease in the enthalpy of the gel–liquid crystal transition of the membrane and a shift of the transition to the lower temperatures, thus resembling, in spite of its prevalently hydrophilic nature, the behavior of transbilayer hydrophobic peptides. The extrusion of these systems creates unilamellar vesicles free of peptides but of smaller size as evidenced by the decreased cooperativity of the transition. The peptide, added externally to the DPPC model membrane, has no effect on the phase behavior of the bilayer.

These findings suggest that the effect of the interaction of scrambled hydrophobic/hydrophilic peptides into lipid bilayers strongly affects the thermotropic behavior of the host membrane depending on the preparation method of the lipid/peptide systems. The whole of the results obtained in the present paper can be useful in approaching studies of bioactive peptides/lipids systems.  相似文献   


6.
Hypelcin A, an α-aminoisobutyric acid-containing antibiotic peptide inducing fusion of egg yolk-l-α-phosphatidylcholine (egg PC) small unilamellar vesicles (SUVs), was investigated by lipid-mixing assay based on resonanceenergy transfer between fluorescent probes, electron microscopy, light scattering, and1H-nuclear magnetic-resonance spectroscopy. At a high peptide-to-lipid ratio of approximately 1:5, the peptide fuses several SUVs of 20–30 nm in diameter into a 40–100 nm vesicle. Under mild conditions where the permeability enhancement (leakage of a trapped fluorescent dye, calcein) of lipid bilayers are observed (peptide to lipid ratios around 1/100), the fusion of the SUVs also occurs, although the fusion requires a somewhat larger amount of the peptide than the leakage does. Furthermore, at higher lipid concentrations, where the aggregation step is sufficiently rapid, the fusion rate is determined by the amount of the membrane bound peptide per lipid molecule, as is the leakage rate. In contrast, for egg PC large unilamellar vesicles (110 nm), hypelcin A induces the leakage, but not the fusion. We conclude that the leakage is not due to the fusion.  相似文献   

7.
High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles   总被引:1,自引:0,他引:1  
We report a morphological study of the encapsulation of 12-nm Fe3O4 nanoparticles (NPs) in large unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC). Preparation was done by reverse-phase evaporation. Phase behavior of the NP-lipid system was studied so that the loading of NPs in vesicles could be maximized. Increasing NP concentration significantly affects the resulting lipid morphology in a manner similar to increasing lipid concentration. Optimal production of high-density NP-loaded vesicles (HNLVs) requires temperatures of 50 degrees C, higher than the main phase transition (Tm) of DPPC. The formation of fully enclosed HNLVs requires incubation times of at least hours.  相似文献   

8.
The membrane binding and model lipid raft interaction of synthetic peptides derived from the caveolin scaffolding domain (CSD) of the protein caveolin-1 have been investigated. CSD peptides bind preferentially to liquid-disordered domains in model lipid bilayers composed of cholesterol and an equimolar ratio of dioleoylphosphatidylcholine (DOPC) and brain sphingomyelin. Three caveolin-1 peptides were studied: the scaffolding domain (residues 83-101), a water-insoluble construct containing residues 89-101, and a water-soluble construct containing residues 89-101. Confocal and fluorescence microscopy investigation shows that the caveolin-1 peptides bind to the more fluid cholesterol-poor phase. The binding of the water-soluble peptide to lipid bilayers was measured using fluorescence correlation spectroscopy (FCS). We measured molar partition coefficients of 10(4) M(-1) between the soluble peptide and phase-separated lipid bilayers and 10(3) M(-1) between the soluble peptide and bilayers with a single liquid phase. Partial phase diagrams for our phase-separating lipid mixture with added caveolin-1 peptides were measured using fluorescence microscopy. The water-soluble peptide did not change the phase morphology or the miscibility transition in giant unilamellar vesicles (GUVs); however, the water-insoluble and full-length CSD peptides lowered the liquid-liquid melting temperature.  相似文献   

9.
The effect of 4th generation poly(amidoamine) dendrimer (4G PAMAM) present in an anionic phospholipid composition, consisting of hydrogenated soyphosphatidylcholine (HSPC), cholesterol (CH), dicetyl phosphate (DCP), and poly(ethylene glycol) (Mw approximately 2000) derivatized phosphatidylethanolamine (PEG2000-PE), on the hydration and liquid crystalline structure formation was investigated. The optical and polarized light microscopies of the liposomal dispersion obtained from the hydrated lipid composition show two types of birefringent structures (mesophases): plastic, wormlike microstructures and conventional, over-elongated lamellae. Differential scanning calorimetry (DSC) shows an increase in the liquid crystalline phase transition (Tg) of the lipid composition from 60 to 94 degrees C with increasing 4G PAMAM concentrations from 0 to 0.011 mM, respectively. The Tg values of the two microstructures were 68 and 84 degrees C, respectively, indicating that the plastic microstructures were 4G PAMAM/DCP-complexes-rich (alpha mesophases) and the conventional and elongated lamellae were dendrimer-doped HSPC/CH-rich microstructures (beta mesophases). Optical microscopy shows that the alpha mesophases convert into various other types of vesicular structures such as giant unilamellar vesicles and biliquid foams, upon heating above the phase transition temperature of the lipid composition (approximately 60-65 degrees C). The microstructure transformation is a result of an osmotic influx of water and the detergent action of PEG2000-PE present in the lipid composition. The transmission electron microscopy (TEM) images of the liposomal dispersion show particles embedding circular transparent domains that exactly correlate to the theoretical 4G PAMAM/DCP complex sizes, thus, providing evidence of 4G PAMAM interspersed within the two mesophases. Small-angle X-ray scattering (SAXS) measurements indicate that the alpha mesophases are a dendrimer-interlinked, symmetrically undulated lamellar phase and the beta mesophases are dendrimer-doped, occasionally kinked lamellae. An increase in dendrimer concentration in the lipid composition was found to decrease interlamellar spacing. On the basis of optical microscopy, DSC, TEM, and SAXS data, a model of dendrimer-doped mesophase structure and lamellae fusion is proposed. This investigation provides new self-assembled materials for drug/gene delivery and supplements the understanding of mechanisms involved in various biological processes such as membrane fusion, transmembrane permeation, and endocytosis.  相似文献   

10.
Host-defense, antibiotic peptides are believed to generate their cytolytic effects by interacting with the membranes of bacterial cells. Direct analyses of peptide interactions with real cellular membranes are difficult, however, due to the high complexity of physiological membranes. This review summarizes experimental work aiming to understand peptide-membrane interactions and their relationships with the peptides' biological actions using specific model systems. Varied model assemblies have been constructed that generally aim to mimic the fundamental lipid bilayer organization of the membrane. The model systems we will describe include multilamellar and unilamellar vesicles, planar lipid bilayers, lipid monolayers and micelles, and colorimetric biomimetic membranes. The different artificial models have facilitated examination of specific biological or chemical parameters affecting peptide action, for example the effect of membrane lipid composition on peptide affinities and membrane penetration, the relationship between membrane fluidity and peptide interactions, the conformations of active peptides, and other factors. We evaluate the strengths and limitations of the various approaches, and point to future directions in the field.  相似文献   

11.
We have observed a bimodal distribution of ellipsoidal unilamellar vesicles (ULVs) in a phospholipid mixture composed of dioleoyl phosphatidylserine (DOPS) and dipalmitoyl and dihexanoyl phosphatidylcholine, DPPC and DHPC, respectively. Dynamic light scattering and transmission electron microscopy data indicate a bimodal size distribution of these nanoparticles with hydrodynamic radii of approximately 200 and >500 nm, while small-angle neutron scattering data were fit using a model of coexisting monodisperse morphologies, namely, oblate and triaxial ellipsoidal vesicles. Unlike DOPS ULV formed by sonication, which can fuse days after being formed, these ULVs are stable over a period of 12 months at 4 degrees C. We also report on the structure of these ULVs associated with the two helical peptide domains (H1 and H2) of a glucosylprotein, namely, Saposin C, to gain some insight into protein-membrane interactions.  相似文献   

12.
Dilute dispersions of the synthetic bilayer forming double-chained cationic lipid dioctadecyldimethylammonium bromide (DODAB) were investigated. In dispersions sonicated above the chain melting temperature Tm (approximately 45 degrees C) it was found by H NMR that about 50% of the surfactant chains remained fluid when the samples were cooled to room temperature, which is 20 degrees C below Tm. In contrast, there was no sign of a fluid fraction in unsonicated samples at room temperature. The addition of the anionic surfactant sodium dodecyl sulfate (SDS) to DODAB dispersions at room temperature resulted in the formation of an essentially stoichiometric DODA-DS complex with frozen chains, as seen by titration calorimetry and H NMR experiments. For sonicated samples, turbidity experiments demonstrated that, after a fast complexation reaction, the system remains colloidally stable unless the SDS-to-DODAB mixing ratio is too close to unity. H NMR experiments also showed that in the unreacted DODAB the fraction of fluid chains remained close to 50%, indicating either that SDS reacts equally fast with fluid and frozen DODAB or that there is a relaxation of the fluid fraction after the complexation. The melting enthalpy and the melting temperature of the alkyl chains rise gradually as the mixing ratio increases. We observed with cryo-TEM that the fraction of large unilamellar vesicles was significantly larger after addition of SDS. This indicates vesicle fusion. Based on both wide- and small-angle X-ray scattering patterns, the structure of the equimolar SDS-DODAB complex at 25 degress C was proposed to be lamellar.  相似文献   

13.
Membrane‐bound c‐Src non‐receptor tyrosine kinase, unlike other acyl‐modified lipid‐anchored proteins, anchors to the membrane by a myristoyl chain along with a polybasic residue stretch, which is shorter in chain length than its host membrane. The packing defect arising from this mismatched chain length of the host and the lipid anchor significantly affects the lateral organization of heterogeneous membranes. We reveal the mixing of phase domains and formation of novel nanoscale‐clusters upon membrane binding of the Myr‐Src (2–9) peptide. Fluorescence cross correlation spectroscopy was used to explore the nature of these clusters. We show that Myr‐Src (2–9) is able to oligomerize, and the peptide clusters are embedded in a lipid platform generated by lipid sorting. Further, using confocal fluorescence microscopy and FRET assays we show that localized charge enrichment and membrane curvature are able to shift the partition coefficient towards the more ordered lipid phase.  相似文献   

14.
We described the first scanning tunneling microscopy study of spreading unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) at a Au(111) electrode surface. At the initial stage of the film formation, the molecular resolution images revealed that DMPC molecules are adsorbed flat with the acyl chains oriented parallel to the surface. The molecules assemble into double rows by aligning the acyl chains in the nearest neighbor direction of the reconstructed Au(111) surface and assuming a 90 +/- 10 degrees angle with respect to line of the molecular row. After approximately 30 min, this film is transformed into a hemimicellar state with long rows characteristic for the formation of hemicylindrical surface micelles. At hydrophilic surfaces such as glass, spreading of vesicles involves adsorption, rupture, and sliding of a single bilayer on a lubricating film of the solvent. We have provided the first evidence that a different mechanism is involved in spreading the vesicles at gold. The molecules released by rupture of vesicles self-assemble into an ordered film, and the assembly is controlled by the chain-substrate interaction.  相似文献   

15.
Large unilamellar vesicles with a diameter of 100 nm were prepared from the zwitterionic phospholipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) at pH 8.0. After addition to these vesicles of the enzyme phospholipase D (PLD) from Streptomyces sp. AA586 at 40 degrees C, the terminal phosphate ester bond of POPC was hydrolyzed, yielding the negatively charged POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid) and the positively charged choline. While the reaction yield in the presence of 1 mM Ca2+ reached 100%, the yield was only approximately 68% in the absence of Ca2+. Furthermore, in the absence of Ca2+, the size of the vesicles did not change significantly with time upon PLD addition, as judged from turbidity, dynamic light scattering, and electron microscopy measurements. In the presence of 1 mM Ca2+, however, PLD addition resulted in vesicle aggregation, fusion, and precipitation, originating from the interaction of Ca2+ ions with the negatively charged phospholipids formed in the membranes. Vesicle fusion was monitored by using a novel fusion assay system involving vesicles containing entrapped trypsin and vesicles containing entrapped chymotrypsinogen A. After vesicle fusion, chymotrypsinogen A transformed into a-chymotrypsin, catalyzed by trypsin inside the fused vesicles. The alpha-chymotrypsin formed could be detected with benzoyl-L-Tyr-p-nitroanilide as a membrane permeable chymotrypsin substrate. The observed vesicle precipitation occurring after vesicle fusion in the presence of 1 mM Ca2+ was correlated with an increase of the main phase transition temperature, Tm, of POPA to values above 40 degrees C.  相似文献   

16.
We report on the gel-to-fluid phase transition behavior of unilamellar vesicles formed with 1,2-dimyristoyl-sn-phosphatidylcholine (14:0 DMPC). We have interrogated the gel-to-fluid transition temperature of these bilayer structures using the chromophore perylene incorporated in their nonpolar region. We observe a discontinuous change in the reorientation time of perylene sequestered within the bilayer at the known melting transition temperature of 14:0 DMPC, 24 degrees C. The perylene reorientation data reveal a local viscosity of 14.5 +/- 2.5 cP in the gel phase, and 8.5 +/- 1.5 cP in the fluid phase. We have also incorporated small amounts of 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (14:1 DMPC) into these unilamellar vesicles and find that the melting transition temperature for these bilayers varies in a regular manner with the amount of 14:1 DMPC present. These data demonstrate that very little "contaminant" is required to cause a substantial change in the gel-to-fluid transition temperature, even though these contaminants do not alter the viscosity of the bilayer sensed by perylene, either above or below the melting transition.  相似文献   

17.
The mechanism of interaction between a model antimicrobial peptide and phospholipid unilamellar vesicle membranes was studied using fluorescence spectroscopy, fluorescence lifetime measurements, and light scattering. The peptide, a mellitin mutant, was labeled at position K14 with the polarity-sensitive probe AlexaFluor 430. The kinetics of the interaction of this derivative with various concentrations of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) vesicles was examined. Our work unveiled two novel aspects of peptide-lipid interactions. First, the AB plot or phasor analysis of the fluorescence lifetime studies revealed at least three different peptide states, the population of which depended on the lipid to peptide (L:P) concentration ratio. Second, complex fluorescence kinetics were observed over extended time-scales from 30 s to 2 h. The extended kinetics was only observed at particular lipid concentrations (L:P ratios 20:1 and 10:1) and not at others (30, 40, 50 and 100:1 L:P ratio). Analysis of the complex kinetics revealed several intermediates. We assign these to distinct states of the peptide formed during helix insertion into the vesicle membrane that are intermediate to lytic pore formation.  相似文献   

18.
Small angle neutron scattering (SANS) is used to study the structures formed in water by a diblock copolymer EO6BO11 (having 6 ethylene oxide, EO, and 11 butylene oxide, BO, units). The data show that polymer solutions over a broad concentration range (0.05-20 wt %) contain vesicular structures at room temperature. Interestingly, these vesicles could be formed without any external energy input, such as extrusion, which is commonly required for the formation of other block copolymer or lipid vesicles. The EO6BO11 vesicles are predominantly unilamellar at low polymer concentrations, whereas at higher polymer concentrations or temperatures there is a coexisting population of unilamellar and multilamellar vesicles. At a critical concentration and temperature, the vesicular structures fuse into lyotropic arrays of planar lamellar sheets. The findings from this study are in broad agreement with the work of Harris et al. (Langmuir, 2002, 18, 5337), who used electron microscopy to identify the vesicle phase in the same system.  相似文献   

19.
Micropipet aspiration of phase-separated lipid bilayer vesicles can elucidate physicochemical aspects of membrane fluid phase coexistence. Recently, we investigated the composition dependence of line tension at the boundary between liquid-ordered and liquid-disordered phases of giant unilamellar vesicles obtained from ternary lipid mixtures using this approach. Here we examine mechanical equilibria and stability of dumbbell-shaped vesicles deformed by line tension. We present a relationship between the pipet aspiration pressure and the aspiration length in vesicles with two coexisting phases. Using a strikingly simple mechanical model for the free energy of the vesicle, we predict a relation that is in almost quantitative agreement with experiment. The model considers the vesicle free energy to be proportional to line tension and assumes that the vesicle volume, domain area fraction, and total area are conserved during aspiration. We also examine a mechanical instability encountered when releasing a vesicle from the pipet. We find that this releasing instability is observed within the framework of our model that predicts a change of the compressibility of a pipet-aspirated membrane cylinder from positive (i.e., stable) to negative (unstable) values, at the experimental instability. The model furthermore includes an aspiration instability that has also previously been experimentally described. Our method of studying micropipet-induced shape transitions in giant vesicles with fluid domains could be useful for investigating vesicle shape transitions modulated by bending stiffness and line tension.  相似文献   

20.
We measured the effect of a model membrane-binding protein on line tension and morphology of phase-separated lipid-bilayer vesicles. We studied giant unilamellar vesicles composed of a cholesterol/dioleoylphosphatidylcholine/palmitoylsphingomyelin mixture and a controlled mole fraction of a Ni-chelating lipid. These vesicles exhibited two coexisting fluid-phase domains at room temperature. Owing to the line tension, σ, between the two phases, the boundary between them was pulled like a purse string so that the smaller domain formed a bud. While observing the vesicles in a microscope, histidine-tagged green fluorescent protein was added, which bound to the Ni-chelating lipid. As protein bound, the vesicle shape changed and the length of the phase boundary increased. The change in morphology was attributed to a reduction of σ between the two phases because of preferential accumulation of histidine-tagged green fluorescent protein-Ni-chelating lipid clusters at the domain boundary. Greater reductions of σ were found in samples with higher concentrations of Ni-chelating lipid; this trend provided an estimate of the binding energy at the boundary, approximately k(B)T. The results show how domain boundaries can lead to an accumulation of membrane-binding proteins at their boundaries and, in turn, how proteins can alter line tension and vesicle morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号