首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nonvolatile ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) memory based on an organic thin‐film transistor with inkjet‐printed dodecyl‐substituted thienylenevinylene‐thiophene copolymer (PC12TV12T) as the active layer is developed. The memory window is 4.5 V with a gate voltage sweep of ?12.5 V to 12.5 V. The field effect mobility, on/off ratio, and gate leakage current are 0.1 cm2/Vs, 105, and 10?10 A, respectively. Although the retention behaviors should be improved and optimized, the obtained characteristics are very promising for future flexible electronics.  相似文献   

3.
Here micropatterned poly(vinylidenefluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) films‐based piezoelectric nanogenerators (PNGs) with high power‐generating performance for highly sensitive self‐powered pressure sensors are demonstrated. The microstructured P(VDF‐TrFE)‐based PNGs reveal nearly five times larger power output compared to a flat film‐based PNG. The micropatterning of P(VDF‐TrFE) polymer makes itself ultrasensitive in response to mechanical deformation. The application is demonstrated successfully as self‐powered pressure sensors in which mechanical energy comes from water droplet and wind. The mechanism of the high performance is intensively discussed and illustrated in terms of strain developed in the flat and micropatterned P(VDF‐TrFE) films. The impact derived from the patterning on the output performance is studied in term of effective pressure using COMSOL multiphysics software.  相似文献   

4.
采用近场静电纺丝法制备了P(VDF TrFE)(聚偏氟乙烯PVDF和三氟乙烯TrFE的共聚物)压电纤维,研究了不同的电纺工艺参数对纤维直径和形貌的影响。结果表明,近场静电纺丝法的工艺参数对纤维形貌特征有决定性影响。其中,P(VDF TrFE)电纺溶液的质量浓度对纤维的形成起决定性因素,当P(VDF TrFE)电纺溶液质量比小于12%时,液滴下落过程中溶液中的溶剂挥发速度不够,导致电纺工作时溶液沉积到衬底前无法呈纤维状;在合适的驱动电压范围内,施加的电压越大,纤维直径越细;同样,采集器的移动速度越快,纤维的直径越细;电纺获得的P(VDF TrFE)纤维直径可达(0.7~12) μm。此外,根据P(VDF TrFE)自身的压电特性,给以纤维一定的弯曲形变,测试了电纺丝法制备的P(VDF TrFE)纤维是否产生极化。实验结果表明,原位制备的纤维未能表现出明显的压电性。  相似文献   

5.
Triboelectric nanogenerator (TENG) is a newly invented technology that can effectively harvest ambient mechanical energy from various motions with promising applications in portable electronics, self‐powered sensor networks, etc. Here, by coupling TENG and a thin film of ferroelectric polymer, a new application is designed for TENG as a self‐powered memory system for recording a mechanical displacement/trace. The output voltage produced by the TENG during motion can polarize the dipole moments in the ferroelectric thin film. Later, by applying a displacement current measurement to detect the polarization density in the ferroelectric film, the motion information of the TENG can be directly read. The sliding TENG and the single‐electrode TENG matrix are both utilized for realizing the memorization of the motion trace in one‐dimensional and two‐dimensional space, respectively. Currently, the ferroelectric thin film with a size of 3.1 mm2 can record a minimum area changing of 30 mm2 and such resolution can still be possibly improved. These results prove that the ferroelectric polymer is an effective memory material to work together with TENG and thereby the fabricated memory system can potentially be used as a self‐powered displacement monitor.  相似文献   

6.
The preparation of ferroelectric polymer–metallic nanowire composite nanofiber triboelectric layers is described for use in high‐performance triboelectric nanogenerators (TENGs). The electrospun polyvinylidene fluoride (PVDF)–silver nanowire (AgNW) composite and nylon nanofibers are utilized in the TENGs as the top and bottom triboelectric layers, respectively. The electrospinning process facilitates uniaxial stretching of the polymer chains, which enhances the formation of the highly oriented crystalline β‐phase that forms the most polar crystalline phase of PVDF. The addition of AgNWs further promotes the β‐phase crystal formation by introducing electrostatic interactions between the surface charges of the nanowires and the dipoles of the PVDF chains. The extent of β‐phase formation and the resulting variations in the surface charge potential upon the addition of nanowires are systematically analyzed using X‐ray diffraction (XRD) and Kelvin probe force microscopy techniques. The ability of trapping the induced tribocharges increases upon the addition of nanowires to the PVDF matrix. The enhanced surface charge potential and the charge trapping capabilities of the PVDF–AgNW composite nanofibers significantly enhance the TENG output performances. Finally, the mechanical stability of the electrospun nanofibers is dramatically enhanced while maintaining the TENG performances by applying thermal welding near the melting temperature of PVDF.  相似文献   

7.
Here, ultrathin, flexible, and sustainable nanofiber‐based piezoelectric nanogenerators (NF‐PENGs) are fabricated and applied as wave energy harvesters. The NF‐PENGs are composed of poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) nanofibers with embedded barium strontium titanate (BaSrTiO3) nanoparticles, which are fabricated by using facile, scalable, and cost‐effective fiber‐forming methods, including electrospinning and solution blowing. The inclusion of ferroelectric BaSrTiO3 nanoparticles inside the electrospun P(VDF‐TrFE) nanofibers enhances the sustainability of the NF‐PENGs and results in unique flexoelectricity‐enhanced piezoelectric nanofibers. Not only do these NF‐PENGs yield a superior performance compared to the previously reported NF‐PENGs, but they also exhibit an outstanding durability in terms of mechanical properties and cyclability. Furthermore, a new theoretical estimate of the energy harvesting efficiency from the water waves is introduced here, which can also be employed in future studies associated with various nanogenerators, including PENGs and triboelectric nanogenerators.  相似文献   

8.
驻极体的研究现状   总被引:4,自引:0,他引:4  
夏钟福 《压电与声光》1997,19(4):242-246
驻极体是电介质物理、材料科学、传感器工程及生物医学的重要交叉学科。近年来,驻极体在生物驻极体、驻极体的应用及有机驻极体的非线性光学效应等方面取得了瞩目的进展。文章就上述几个问题,从材料制备、实验方法和驻极体的应用等方面进行了综述。  相似文献   

9.
10.
The extremely stable high‐power generation from hybrid piezoelectric nanogenerator (HP‐NG) based on a composite of single‐crystalline piezoelectric perovskite zinc stannate (ZnSnO3) nanocubes and polydimethylsiloxane without any electrical poling treatment is reported. The HP‐NG generates large power output under only vertical compression, while there is negligible power generation with other configurations of applied strain, such as bending and folding. This unique high unidirectionality of power generation behavior of the HP‐NG provides desirable features for large‐area piezoelectric power generation based on vertical mechanical compression such as moving vehicles, railway transport, and human walking. The HP‐NGs of ZnSnO3 nanocubes exhibit high mechanical durability, excellent robustness, and high power‐generation performance. A large recordable output voltage of about 20 V and an output current density value of about 1 μA cm?2 are successfully achived, using a single cell of HP‐NG obtained under rolling of a vehicle tire.  相似文献   

11.
The development of stretchable/soft electronics requires power sources that can match their stretchability. In this study, a highly stretchable, transparent, and environmentally stable triboelectric nanogenerator with ionic conductor electrodes (iTENG) is reported. The ion‐conducting elastomer (ICE) electrode, together with a dielectric elastomer electrification layer, allows the ICE‐iTENG to achieve a stretchability of 1036% and transmittance of 91.5%. Most importantly, the ICE is liquid solvent‐free and thermally stable up to 335 °C, avoiding the dehydration‐induced performance degradation of commonly used hydrogels. The ICE‐iTENG shows no decrease in electrical output even after storing at 100 °C for 15 h. Biomechanical motion energies are demonstrated to be harvested by the ICE‐iTENG for powering wearable electronics intermittently without extra power sources. An ICE‐iTENG‐based pressure sensor is also developed with sensitivity up to 2.87 kPa?1. The stretchable ICE‐iTENG overcomes the strain‐induced performance degradation using percolated electrical conductors and liquid evaporation‐induced degradation using ion‐conducting hydrogels/ionogels, suggesting great promising applications in soft/stretchable electronics under a relatively wider temperature range.  相似文献   

12.
Multifunctional electronic textiles (e‐textiles) incorporating miniaturized electronic devices will pave the way toward a new generation of wearable devices and human–machine interfaces. Unfortunately, the development of e‐textiles is subject to critical challenges, such as battery dependence, breathability, satisfactory washability, and compatibility with mass production techniques. This work describes a simple and cost‐effective method to transform conventional garments and textiles into waterproof, breathable, and antibacterial e‐textiles for self‐powered human–machine interfacing. Combining embroidery with the spray‐based deposition of fluoroalkylated organosilanes and highly networked nanoflakes, omniphobic triboelectric nanogenerators (RF‐TENGs) can be incorporated into any fiber‐based textile to power wearable devices using energy harvested from human motion. RF‐TENGs are thin, flexible, breathable (air permeability 90.5 mm s?1), inexpensive to fabricate (<0.04$ cm?2), and capable of producing a high power density (600 µW cm?2). E‐textiles based on RF‐TENGs repel water, stains, and bacterial growth, and show excellent stability under mechanical deformations and remarkable washing durability under standard machine‐washing tests. Moreover, e‐textiles based on RF‐TENGs are compatible with large‐scale production processes and exhibit high sensitivity to touch, enabling the cost‐effective manufacturing of wearable human–machine interfaces.  相似文献   

13.
Melamine (Mel) is added illegally to foods and feeds due to its high nitrogen content and high intake, and it causes serious health problems, so it is urgent to build a simple and quick method for detecting Mel in our daily life. In this work, a self‐powered Mel detection method is developed that is based on the newly invented triboelectric nanogenerator (TENG) by using the strong electronegativity property of Mel. In addition, Mel can enhance the electrical output signals of the TENGs by pairing with other triboelectric materials. Thus a high‐sensitive Mel sensor is designed based on polytetrafluoethylene (PTFE) TENG; the output current of TENG increases with the addition of Mel, resulting in largely improved detection limit of Mel with 0.5 ppb and a linear increase range from 1 to 500 ppb. This study not only develops a new type of material for TENG, but also demonstrates an innovative and convenient method for the detection of Mel and other biomaterials.  相似文献   

14.
Triboelectric nanogenerators (TENG) are a possible power source for wearable electronics, but the conventional electrode materials for TENG are metals such as Cu and Al that are easy to be oxidized or corroded in some harsh environments. In this paper, metal electrode material is replaced by an electrical conducting polymer, polypyrrole (PPy), for the first time. Moreover, by utilizing PPy with micro/nanostructured surface as the triboelectric layer, the charge density generated is significantly improved, more superior to that of TENG with metals as the triboelectric layer. As this polymer‐based TENG is further integrated with PPy‐based supercapacitors, an all‐plastic‐materials based self‐charging power system is built to provide sustainable power with excellent long cycling life. Since the environmental friendly materials are adopted and the facile electrochemical deposition technique is applied, the new self‐charging power system can be a practical and low cost power solution for many applications.  相似文献   

15.
16.
17.
Ultrafine particulate matter (PM) in indoor air has become a serious concern for public health. Therefore, there is a growing interest in filters that can be installed on the window frames of ordinary homes to improve the indoor air quality by natural passive ventilation without using expensive forced air circulation systems. Thus, these filters require a high filtering efficiency and high air permeability and visibility, which do not compromise the original functionality of the windows. The filters developed for this purpose to date have demonstrated a high filtering efficiency for PM2.5 but a relatively low efficiency for PM1.0. Here, the performance of the ultrathin poly[(vinylidenefluoride‐co‐trifluoroethylene) (PVDF‐TrFE) nanofiber air filter capable of high‐efficiency PM1.0 filtration is reported. To enhance the PM1.0 filtering efficiency, the filter is electrically activated by the polarization of dipoles and triboelectrification using the ferroelectric nature and triboelectrically negative property of the PVDF‐TrFE filter layer. The electrically activated PVDF‐TrFE filter demonstrates a PM1.0 filtering efficiency of over ≈88% after polarization, which is further improved to ≈94% after triboelectrification. In addition, the filter is ultrathin and air‐permeable with 65% light transmittance. The methods introduced in this work can be adopted to develop high performance, highly visible, and air‐permeable filter media.  相似文献   

18.
Self‐healing triboelectric nanogenerators (TENGs) with flexibility, robustness, and conformability are highly desirable for promising flexible and wearable devices, which can serve as a durable, stable, and renewable power supply, as well as a self‐powered sensor. Herein, an entirely self‐healing, flexible, and tailorable TENG is designed as a wearable sensor to monitor human motion, with infrared radiation from skin to promote self‐healing after being broken based on thermal effect of infrared radiation. Human skin is a natural infrared radiation emitter, providing favorable conditions for the device to function efficiently. The reversible imine bonds and quadruple hydrogen bonding (UPy) moieties are introduced into polymer networks to construct self‐healable electrification layer. UPy‐functionalized multiwalled carbon nanotubes are further incorporated into healable polymer to obtain conductive nanocomposite. Driven by the dynamic bonds, the designed and synthesized materials show excellent intrinsic self‐healing and shape‐tailorable features. Moreover, there is a robust interface bonding in the TENG devices due to the similar healable networks between electrification layer and electrode. The output electric performances of the self‐healable TENG devices can almost restore their original state when the damage of the devices occurs. This work presents a novel strategy for flexible devices, contributing to future sustainable energy and wearable electronics.  相似文献   

19.
Making use of water wave energy at large is one of the most attractive, low‐carbon, and renewable ways to generate electric power. The emergence of triboelectric nanogenerator (TENG) provides a new approach for effectively harvesting such low‐frequency, irregular, and “random” energy. In this work, a TENG array consisting of spherical TENG units based on spring‐assisted multilayered structure is devised to scavenge water wave energy. The introduction of spring structure enhances the output performance of the spherical TENG by transforming low‐frequency water wave motions into high‐frequency vibrations, while the multilayered structure increases the space utilization, leading to a higher output of a spherical unit. Owing to its unique structure, the output current of one spherical TENG unit could reach 120 µA, which is two orders of magnitude larger than that of previous rolling spherical TENG, and a maximum output power up to 7.96 mW is realized as triggered by the water waves. The TENG array fabricated by integrating four units is demonstrated to successfully drive dozens of light‐emitting diodes and power an electronic thermometer. This study provides a new type of TENG device with improved performance toward large‐scale blue energy harvesting from the water waves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号