首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
磁性纳米颗粒负载钯催化剂对Heck反应的催化活性   总被引:2,自引:0,他引:2  
沈彬  李游  王志飞  何农跃 《催化学报》2007,28(6):509-513
采用水热法合成了碳包埋磁性纳米复合颗粒C/(Au@Fe),并以之为载体制备了纳米钯催化剂,利用透射电镜、X射线光电子能谱和振动样品磁强计等手段对催化剂进行了表征,评价了催化剂对Heck反应的催化活性.结果表明,催化剂的平均粒径约为300nm,表面覆盖着一层粒径为12nm的钯颗粒,整个催化剂呈现超顺磁性.对于碘代苯与丙烯酸之间的Heck反应,在乙酸钠或三乙胺碱性条件下反应4h,碘代苯转化率可达95%以上.催化剂重复使用10次时仍可保持很高的催化活性(碘代苯转化率88%).对于其他不同反应底物之间的Heck反应,催化剂同样显示有较高的催化活性.催化剂可稳定分散于反应体系中,并可在外磁场作用下快速与反应体系分离.  相似文献   

2.
开发了一种使用纳米Al2O3作载体,由四三苯基膦钯衍生的纳米钯催化剂催化的使用芳基重氮盐作原料的高效绿色Suzuki和Heck偶联反应来制备联苯类和芳基烯类化合物的方法.该反应体系以乙醇作反应溶剂,在空气中于25℃下,催化剂可高效催化芳基重氮盐分别与芳基硼酸和烯烃的Suzuki和Heck偶联反应,各类考察的反应底物都给出较高的收率,而且催化剂循环利用4次后,其催化活性和反应收率都没有明显降低.  相似文献   

3.
磁性纳米粒子负载催化剂的应用研究进展   总被引:1,自引:0,他引:1  
简要评述了近年来磁性纳米粒子负载钯及小分子催化剂在Suzuki,Heck和Sonogashir等偶联反应中的应用研究.参考文献29篇.  相似文献   

4.
郝燕  王帅  孙蔷  石磊  陆安慧 《催化学报》2015,(4):612-619
负载型贵金属纳米催化剂中的金属纳米粒子易发生团聚或流失,因此提高金属活性组分的分散性和稳定性很重要。我们报道了一种制备高分散钯纳米催化剂的方法,通过浸泡法将氯钯酸前驱体负载到苯并噁嗪聚合物上,再经过惰性气氛一步热解得到纳米炭球担载钯催化剂.催化剂性能通过温和条件下苯甲醇氧化反应进行评价.经过500℃热处理制备的催化剂,从TEM图可以看出Pd纳米粒子均匀分散在载体上,尺寸大小约为3 nm,这是由于载体和钯活性组分的配位作用有利于提高钯纳米粒子的分散性和稳定性.通过调控金属负载量及负载时间,尽可能地实现活性组分分布在载体外表面,制备的催化剂上最高TOF为690 h-1.此催化剂同时具有较好的循环稳定性,失活后的催化剂经过200℃焙烧即可实现再生.  相似文献   

5.
负载型Heck反应催化剂的研究进展   总被引:2,自引:0,他引:2  
Heck反应是一类重要的C-C偶联反应,传统的均相Heck反应催化剂存在分离和回收困难等问题;近年来负载型Heck反应催化剂的研究引起了人们的广泛关注.本文综述了钯基和非钯基负载型Heck反应催化剂的研究进展,评述了不同载体上催化活性组分对Heck反应的特点,并展望了其发展趋势.  相似文献   

6.
淀粉负载钯催化剂的制备及对Heck反应的催化性能   总被引:14,自引:0,他引:14  
张磊  崔元臣 《应用化学》2005,22(4):440-0
淀粉负载钯催化剂的制备及对Heck反应的催化性能;淀粉;钯;负载型催化剂;Heck反应  相似文献   

7.
采用硝酸对活性炭进行氧化处理,增加活性炭上羧基的含量,然后与乙二胺、吡啶-2-甲醛反应将吡啶亚胺配体引入活性炭,并以此为载体与氯化钯反应制得活性炭固载的吡啶亚胺钯粒子。采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)和透射电镜(TEM)手段对其进行表征,并研究了该催化剂对Heck反应的催化性能。实验结果表明,催化剂中钯粒子通过配位键固定在载体上,在载体表面均匀分布,粒径在10nm左右。该催化剂对碘代芳烃和烯烃的Heck反应具有较高的催化活性,并具有良好的循环使用性能。  相似文献   

8.
以采用改进的气相沉积法制备的具有规整{1010}晶面的氧化锌纳米线为载体,合成了氧化锌纳米线负载钯催化剂,考察了还原温度和负载量对催化剂表面形成Pd Zn合金过程的影响,并通过适当的后处理过程制备了氧化锌纳米线外延生长Pd Zn纳米粒子催化体系.结果表明,当金属钯负载量较低(质量分数约为2%)时,经400℃还原后的催化剂表面会形成PdxZny(xy)合金,从而影响催化剂的CO选择性;提高钯负载量或还原温度有利于将PdxZny(xy)合金转化为Pd Zn合金,降低CO选择性.负载Pd Zn合金纳米粒子与氧化锌纳米线载体之间外延生长的界面关系使其在甲醇水蒸气重整反应中显示出优异的反应稳定性.  相似文献   

9.
磁性纳米粒子(MNPs)负载钯催化剂因具有高的催化活性及易于原位磁分离回收等优点而得到快速发展,成为一类具有广泛应用前景的纳米催化剂,在学术及工业领域均受到广泛的关注。 本文对近年来MNPs负载钯催化剂在Suzuki、Heck等C-C偶联反应中的应用研究进行简要阐述,并对其发展前景进行了展望。  相似文献   

10.
采用溶胶-凝胶法制备出介孔二氧化硅包裹四氧化三铁纳米复合颗粒,在其表面修饰巯基,并以此为载体通过-SCH2-化学键嫁接长链的肟钯环络合物.利用透射电镜(TEM)、高分辨透射电镜(HRTEM)、傅里叶变换红外(FT-IR)光谱、N2吸附-脱附、X光电子能谱(XPS)、振动样品磁强计(VSM)等手段对催化剂进行表征,通过Heck反应对催化剂的活性进行评价.实验结果表明:所制备的磁性颗粒直径约为150nm,比表面积为287.0m2·g-1,且具有大小为3.5nm呈不规则的孔道结构,整个催化剂呈现超顺磁性.对于碘代苯与丙烯酸乙酯之间的Heck反应,2.5h后碘代苯的转化率可达到99%,催化剂在重复使用6次后能保持很高的催化活性(碘代苯转化率为95%).催化剂可稳定分散于反应体系中,并可在外磁场作用下快速与反应体系分离.  相似文献   

11.
The Heck reaction has been the subject of intense investigation in the past decade. Many new types of catalysts have been developed in addition to the existing palladium/phosphine complexes. Prominent among these are palladacycles, pincers, several types of heterogeneous palladium catalysts, colloids and ligand-free palladium, usually in the form of Pd(OAc)2. Most of the newer types function only at higher temperatures, typically between 120 and 160 degrees C. It has been shown that irrespective of the catalyst precursor, none of these catalysts are stable at these high temperatures. They all have a tendency to form soluble palladium(0) colloids or nanoparticles, certainly with less reactive substrates such as aryl bromides or chlorides. The Heck reaction takes place by attack of the arylating agent on the palladium atoms in the outer rim of the nanoparticles. This leads to formation of monomeric or dimeric anionic palladium complexes that undergo the usual steps of the Heck mechanism as described by Amatore and Jutand.  相似文献   

12.
Nanoparticles (2–10 nm) of palladium have been deposited on single wall carbon nanotubes (SWNT) by spontaneous reduction from Pd(OAc)2 or from oxime carbapalladacycle. These catalysts exhibit higher catalytic activity than palladium over activated carbon (Pd/C) for the Heck reaction of styrene and iodobenzene and for the Suzuki coupling of phenylboronic and iodobenzene. This fact has been attributed as reflecting the dramatic influence of the size particle on the activity of the palladium catalyst for CC bond forming reactions as compared to other reaction types less demanding from the point of view of the particle size. Thus, in contrast to the Heck and Suzuki reactions, Pd/C is more active than palladium nanoparticles deposited on SWNT for the catalytic oxidation by molecular oxygen of cinnamyl alcohol to cinnamaldehyde and for the hydrogenation of cinnamaldehyde to 3-phenylpropionaldehyde.  相似文献   

13.
Palladium chloride doped chitosan composite nanofibers were prepared by electrospinning with sodium polyacrylate (PAAS) as the co-spinning agent. The composite nanofibers are subsequently treated at elevated temperature to improve their solvent resistance. The Pd (II) cations inside the composite nanofibers were reduced into uniform palladium nanoparticles (Pd NPs) with mean diameter of ~4.93 nm. These Pd NPs inside the chitosan composite nanofibers exhibited excellent catalytic activity for Heck reactions of aromatic iodides with alkenes with yields over 85%. Moreover, due to the fibrous structure, this novel fibrous palladium catalyst could be readily recovered by simple filtration and reused for 18 times without loss of initial catalytic activity. It was found that the reactants could readily diffuse from the reaction solution to the active Pd NPs inside the nanofibers and the products could departure from composite fibers into the reaction solution, while the Pd NPs were tightly restricted inside the chitosan composite nanofibers.  相似文献   

14.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

15.
Highly porous amidoximed carbon nanofibers(AOCNFs), which were fabricated via a conventional electrospinning technique followed by chemically modification, impregnation-reduction and carbonization process, had been used for the immobilization of palladium nanoparticles(Pd NPs) catalyst. During the carbonization process, polystyrene(PS) was selectively decomposed from bicomponent fibers, generating porous fibers. Fourier transform infrared spectroscopy(FTIR) result revealed the functional groups on PAN-PS fibers(PAN=polyacrylonitrile), AOPAN-PS fibers and AOCNFs; scanning electron microscopy(SEM) was used to observe the morphology of all stages of nanofibers; transmission electron microscopy(TEM) result gave the structure of through-hole morphology clearly visible and the dispersion of Pd NPs on the surface of nanofibers; and X-ray photoelectron spectra(XPS) confirmed that Pd nanoparticles on the surface of AOCNFs was of the metallic state. Moreover, the as-prepared catalyst exhibited high catalytic activity and efficient recycle for Heck coupling reactions between iodobenzene and acrylates.  相似文献   

16.
A variety of palladium on activated carbon catalysts differing in Pd dispersion, Pd distribution, Pd oxidation state, and water content were tested in Heck reactions of aryl bromides with olefins. The optimization of the catalyst (structure-activity relationship) and reaction conditions (temperature, solvent, base, and Pd loading) allowed Pd/C catalysts with very high activity for Heck reactions of unactivated bromobenzene (turnover number (TON) approximately 18000, turnover frequency (TOF) up to 9000, Pd concentrations down to 0.005 mol %) to be developed. High Pd dispersion, low degree of reduction, sufficient content of water, and uniform Pd impregnation are criteria for the most active system. The catalysts combine high activity and selectivity under ambient conditions (air and moisture), easy separation (filtration), and quantitative recovery of palladium. Determination of Pd in solution after and during the reaction, and catalyst characterization before and after the reaction (transmission electron microscopy (TEM), X-ray diffraction (XRD)), indicate dissolution/reprecipitation of palladium during the reaction. The Pd concentration in solution is highest at the beginning of the reaction and is a minimum (< 1 ppm) at the end of the reaction. Palladium leaching correlates significantly with the reaction parameters.  相似文献   

17.
The palladium nanoparticles/carbon nanofibers(Pd NPs/CNFs) catalyst was prepared by the electrospinning method, the hydrazine hydrate solution reduction in an ice bath environment, the high temperature carbonization. The catalyst was characterized by X-ray diffraction(XRD), fieldemission scanning electron microscope(FE-SEM), and transmission electron microscopy(TEM). The nanofibers are not cross-linked and arranged in order. The surface of Pd NPs/CNFs is smooth, and it can be observed that a large number of particles were loaded and well-dispersed in carbon fiber matrix, and the particle distribution is uniform. The activity center of catalyst is Pd(0). The Pd NPs/CNFs exhibited a high efficiency, good reusability and stability in the Suzuki and Heck reactions. It can be used for at least five consecutive runs without significant loss of its catalytic activity. The good recyclability of Pd NPs/CNFs provides a way to greatly reduce the cost of the catalyst.  相似文献   

18.
We report on a novel type of nanocomposite for use in the electrooxidation of formic acid in fuel cells. The material is composed of palladium nanoparticles (Pd-NPs) and carbon nanofibers (CNFs) and was prepared by electrospinning of the precursors Pd(acac)2 and polyacrylonitrile, respectively, followed by thermal treatment to generate in-situ Pd-NPs that are well dispersed within the CNF framework. The nanocomposite was characterized by TEM, high-resolution TEM, SEM, XRD, Raman spectroscopy, and XPS. The size of the Pd-NPs ranges from 12 to 82 nm, depending on the temperature for carbonization (700–1,000 °C). The length and width of the CNF is in the order of tens of micrometers and 300 to 500 nm, respectively. TEM and XPS studies indicate that the Pd-NPs are firmly embedded in the CNF, resulting in a good electrochemical stability of the composite. The electrocatalytic properties of the composite with respect to the oxidation of formic acid were studied by cyclic voltammetry and chronoamperometry. They showed a distinctly improved electrocatalytic activity and stability compared to a commercial Pd-on-carbon catalyst. The Pd/CNF composite carbonized at 900 °C was found to display the best performance.
Figure
Novel Pd nanoparticle/carbon nanofiber composite with Pd nanoparticles uniformly dispersed within the carbon nanofibers framework was successfully prepared by a simple and controllable method, which showed superior electrocatalytic performance toward oxidation of formic acid.  相似文献   

19.
In this work, we developed an electrochemical method for the detection of hydrazine based on palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF‐GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well‐defined oxidation peak appeared at ?0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF‐GCE was also studied, which demonstrated an irreversible diffusion‐controlled electrode process and a four‐electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).  相似文献   

20.
杨元法  庄明  曾朝霞  黄朝表  罗孟飞 《中国化学》2006,24(10):1309-1314
The ethylenediamine-functionalized resin-supported Pd(0)complex was prepared from PdCl_2 and ethylenedia-mine-functionalized chloromethylated polystyrene,followed by reduction with KBH_4.The complex was character-ized by FT-IR,XRD,BET,SEM and EDS.The resin-supported catalyst exhibited high catalytic activity in theHeck reaction and could be reused up to 17 times in NMP or 16 times in DMF at 90 ℃ in the Heck reaction of io-dobenzene with acrylic acid.The leaching investigation disclosed that the palladium leaching was caused by the in-teraction of iodobenzene with the metal Pd(0)on supported catalyst.The leached palladium species in filtrate wasvery stable and could be reused five times after the solid catalyst was filtered off.A cross-transfer test in recyclingin the presence of additional carbon disclosed that the soluble leached palladium species had much higher catalyticactivity than supported and/or adsorbed palladium in solid-solution heterogeneous Heck reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号