首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method incorporating nested collision-induced dissociation/post-source decay (CID/PSD) combined with endopeptidase digestion is described as an approach to determine the sequence of N-terminally modified peptides. The information from immonium and related ions observed in the CID/PSD spectrum was used for the selection of a suitable endopeptidase for the digestion of peptides. Rapid and reliable assignment of peptide sequence was performed by the comparison of CID/PSD spectra of both intact and endopeptidese-digested peptide fragments, since the assignments of the observed fragment ions to either N- or C-terminal ions can thus be carried out unambiguously. This nested CID/PSD method was applied to the sequence determination of two peptides from the solitary wasps Anoplius samariensis and Batozonellus maculifrons (pompilid wasps), which could not be sequenced by the Edman method due to N-terminal modification.  相似文献   

2.
We have examined the applicability of the 'nested' collision induced dissociation/post-source decay (CID/PSD) method to the sequencing of novel peptides from solitary wasps which have neurotoxic venom for paralyzing other insects. The CID/PSD spectrum of a ladder peptide derived from an exopeptidase digest was compared with that of the intact peptide. The mass peaks observed only in the CID/PSD spectrum of a ladder peptide were extracted as C-terminal fragment ions. Assignment of C-terminal fragment ions enabled calculation of N-terminal fragment masses, leading to differentiation between N-terminal fragment ions and internal fragment ions. This methodology allowed rapid and sensitive identification by removing ambiguity in the assignment of the fragment ions, and proved useful for sequencing unknown peptides, in particular those available as natural products with a limited supply.  相似文献   

3.
SeqMS, a software aid for de novo sequencing by tandem mass spectrometry (MS/MS), which was initially developed for the automated interpretation of high-energy collision-induced dissociation (CID) MS/MS spectra of peptides, has been applied to the interpretation of low-energy CID and post-source decay (PSD) spectra of peptides. Based on peptide backbone fragmented ions and their related ions, which are the dominant ions observed in the latter two techniques, the types of ions and their propensities to be observed have been optimized for efficient interpretation of the spectra. In a typical example, the modified SeqMS allowed the complete sequencing of a 31-amino acid synthetic peptide, except for the isobaric amino acids (Leu or Ile, and Lys or Gln), based on only the low-energy CID-MS/MS spectrum.  相似文献   

4.
Ammodytoxins (Atxs) are presynaptically neurotoxic phospholipases present in Vipera ammodytes ammodytes snake venom. Atxs show a high sequence homology and contain 14 cysteines which form seven biologically relevant disulfide bridges-connecting non-neighboring cysteines. Formic acid cleavage was performed to confirm protein sequences by MALDI RTOF MS and resulted in 95.6% sequence coverage exhibiting only few formylations. Cysteine-containing peptides showed adjacent signals 2 and/or 4 Da lower (according to the number of cysteines present in the peptide) than the theoretical molecular weight indicating disulfide bridge rearrangement. Post-source decay (PSD) and high-energy collision-induced dissociation (CID) at 20 keV experiments showed fragmentation pattern unique for the reduced, thiol group containing and the oxidized, disulfide bridge harboring peptides. Besides typical low-energy fragment ions observed during PSD experiments (a-, b-, y-type ions), additional high-energy fragment ions (c-, x-, w-, d-type and internal fragments) of significant intensity were generated during fragmentation at 20 keV. In the case of charge directing N- and C-termini, x- and w-type ions were also observed during PSD. Good and up to complete sequence coverage was achieved for all studied peptides from Atxs in the case of high-energy CID, whereas PSD lacked information particularly for larger peptides.  相似文献   

5.
In the era of complete genome sequences, biochemical and medical research will focus more on the dynamic proteome of a cell. Regulation of proteins by post-translational modifications, which are not determined by the gene sequence, are already intensively studied. One example is phosphorylation of serines and threonines, probably the single most common cellular regulatory mechanism. In this paper we describe the sequencing of mono- and bisphosphorylated peptides, including identification of the phosphorylation sites, by post-source decay (PSD) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition to dephosphorylation of the parent ions, we studied the influence of the phosphate group on the fragmentation of peptides. Generally, peptides phosphorylated on serine and threonine residues displayed no difference in their fragmentation patterns. The intensities of the resulting fragment ion signals depend only on the peptide sequence and not on either the phosphorylated amino acid or its position in the peptide chain. Phosphorylation increased the bond cleavage C-terminal to the phosphorylation site more than 10-fold, resulting in abundant signals, which typically dominated the PSD spectra. The produced C-terminally phosphorylated b-type fragment ions showed characteristic dephosphorylated fragment ions b(n) -H(3)PO(4) (-98 Da) and b(n) -HPO(3) (-80 Da) of higher abundances than the phosphorylated fragment ion. As a second layer to identify the phosphorylation site, all internally phosphorylated fragment ions were accompanied by minor, but always detectable, signals of the dephosphorylated fragment ions. Interpretation of PSD spectra of phosphopeptides was not more complicated than for unphosphorylated peptides, despite the increased number of obtained fragment ion signals.  相似文献   

6.
A simple method of solid-phase derivatization and sequencing of tryptic peptides has been developed for rapid and unambiguous identification of spots on two-dimensional gels using post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The proteolytic digests of proteins are chemically modified by 4-sulfophenyl isothiocyanate. The derivatization reaction introduces a negative sulfonic acid group at the N-terminus of a peptide, which can increase the efficiency of PSD fragmentation and enable the selective detection of only a single series of fragment ions (y-ions). This chemically assisted method avoids the limitation of high background normally observed in MALDI-PSD spectra, and makes the spectra easier to interpret and facilitates de novo sequencing of internal fragment. The modification reaction is conducted in C(18) microZipTips to decrease the background and to enhance the signal/noise. Derivatization procedures were optimized for MALDI-PSD to increase the structural information and to obtain a complete peptide sequence even in critical cases. The MALDI-PSD mass spectra of two model peptides and their sulfonated derivatives are compared. For some proteins unambiguous identification could be achieved by MALDI-PSD sequencing of derivatized peptides obtained from in-gel digests of phosphorylase B and proteins of hepatic satellite cells (HSC).  相似文献   

7.
An algorithm for interpretation of product ion spectra of peptides generated from ion trap mass spectrometry is developed for de novo amino acid sequencing of peptides for the purpose of protein identification. It is based on a multi-pass analysis of product ion data using a rigorous data extraction and sequence interpretation protocol in the initial pass. The extraction/interpretation algorithm becomes more relaxed in subsequent passes, considering more of the fragment ions, and potentially more sequence candidates. The possible peptide sequences generated by the algorithm are scored according to those sequences which best explain the fragment ion spectrum. These sequences are searched against a protein database using a BLAST search engine to find likely protein candidates. The method is also suitable for locating and determining protein modifications, and can be applied to de novo interpretation of peptide fragment ions in the tandem mass (MS/MS) spectrum produced from a mixture of two peptides having similar nominal mass, but different sequences. Using a known protein, bovine serum albumin, as an example, it is illustrated that this method is rapid and efficient for MS/MS spectral interpretation. This method combined with BLAST programs is then applied to search homologies and to generate information on post-translational modifications of an unknown protein isolated from shark cartilage that does not have a complete genome or proteome database.  相似文献   

8.
Nano-electrospray tandem mass spectrometry (nano-ES-MS/MS) was used to record collision-induced dissociation (CID) spectra of a set of peptoid-peptide hybrids and the complete peptoid derived from the phosphopeptide Ac-pTyr-Glu-Thr-Leu-NH(2) (1). The presence of B and Y'-type fragment ions in the tandem mass spectra of the protonated molecular ions [M + H](+) allowed confirmation of sequence similar to mass spectrometric sequence analysis in peptides. In the isomeric peptoid compounds studied, one or several amino acid residues were replaced by peptoid residues (N-substituted glycine residues), which resulted in characteristic tandem mass spectra with differently increased relative abundances of Y'-and B-type fragment ions. The increment of a particular Y'-ion was directly correlated to the position of a peptoid residue present. In addition to these increased peak intensities, other characteristic peaks were also observed compared with the spectrum of reference peptide 1. When a peptoid phosphotyrosine was incorporated, the presence of this residue was apparent from the occurrence of a relatively intense peak at m/z 187 representing the positively charged side-chain of phosphotyrosine, which was almost absent in the spectrum of the reference peptide 1. Since the threonine side-chain had to be translated into the homo peptoid analog this substitution was apparent from the presence of [M + H](+) and fragment ions 14 mass units higher than observed in the spectrum of the reference phosphopeptide 1. The presence of an NLeu peptoid residue could be confirmed by the specific fragmentation of the immonium ion showing an intense peak in its tandem mass spectrum at m/z 57, which results from the loss of an neutral imine molecule leading to a positively charged [C(4)H(9)](+) ion. By means of these mass spectrometric characteristics, all isomeric peptoid compounds could be distinguished from each other and characterized. The methods used appear to be very useful in future studies of peptoids and peptoid-peptide hybrids.  相似文献   

9.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

10.
We have developed a novel method for enhancing the response of a peptide in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) by activating the C-terminal carboxyl group through an oxazolone with which is coupled an amine containing a functional group to help ionize the peptide. The reactions consist of dehydration with acetic anhydride to give an oxazolone, followed by aminolysis with an appropriate amino acid derivative such as arginine methyl ester. The MALDI signal of Ac-Tyr-Gly-Gly-Phe-Leu-Arg-OMe, thus converted from leucine-enkephalin, was detected while completely excluding the responses of arginine-deficient peptides coexisting in the reaction mixture. Some less intense peaks corresponding to a few sequential degradation products, also terminated with the arginine derivative, were also observed. The side-chain groups potentially that are reactive were conveniently protected by acetylation simultaneous with the C-terminal activation, and those that remained unprotected were reduced to virtually negligible proportions when the reaction was conducted in a peptide solution of concentration less than 1 mM. The greatly increased responses of such arginine-terminated peptides could possibly be exploited to discern the C-terminal tryptic peptide of a protein that is otherwise almost insensitive to MALDI-MS in general. The simplicity of the post-source decay spectrum of enkephalin derivatized by arginine methyl ester characteristically accentuated z- and b-type ions, and this should facilitate sequencing of such derivatized peptides. Remaining problems with practical applications of this approach are discussed.  相似文献   

11.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

12.
The dissociation reactions of [M + H]+, [M + Na]+, and [M + Cu]+ ions of bradykinin (amino acid sequence RPPGFSPFR) and three bradykinin analogues (RPPGF, RPPGFSPF, PPGFSPFR) are examined by using 193-nm photodissociation and post-source decay (PSD) TOF-TOF-MS techniques. The photodissociation apparatus is equipped with a biased activation cell, which allows us to detect fragment ions that are formed by dissociation of short-lived (<1 mus) photo-excited ions. In our previously reported photodissociation studies, the fragment ions were formed from ions dissociating with lifetimes that exceeded 10 mus; thus these earlier photofragment ion spectra and post-source decay (PSD) spectra [composite of both metastable ion (MI) and collision-induced dissociation (CID)] were quite similar. On the other hand, short-lived photo-excited ions dissociate by simple bond cleavage reactions and other high-energy dissociation channels. We also show that product ion types and abundances vary with the location of the charge on the peptide ion. For example, H+ and Na+ cations can bind to multiple polar functional groups (basic amino acid side chains) of the peptide, whereas Cu+ ions preferentially bind to the guanidino group of the arginine side-chain and the N-terminal amine group. Furthermore, when Cu+ is the charge carrier, the abundances of non-sequence informative ions, especially loss of small neutral molecules (H2O and NH3) is decreased for both photofragment ion and PSD spectra relative to that observed for [M + H]+ and [M + Na]+ peptide ions.  相似文献   

13.
The fragmentation of positive ions of DNA under the conditions of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was investigated by post-source decay (PSD) analysis and hydrogen/deuterium (H/D) exchange. Spectra of five different synthetic 4mer oligonucleotides were recorded. As a main result the hypothesis was confirmed that for these ions all fragment ions result from processes, initiated by protonation/deuteration of a suitable base followed by a loss of this base as a neutral or ion and further backbone cleavages. The three bases adenine, guanine, and cytosine all exhibit comparable lability for fragmentation. The spectra show evidence for an interaction of the adenine base with the phosphate backbone. Signals of fragments containing TT- and CT-cycloadducts were observed in the spectra.  相似文献   

14.
The sequence coverage by fragment ions resulting from collision-induced dissociation in a triple stage quadrupole (TSQ) and a quadrupole ion trap (QIT) mass spectrometer of 10-20-mer oligonucleotides was investigated. While (a-B) and w ion series were the most abundant on both instruments, additional ion series of sequence relevance were preferably formed in the TSQ. Thus, a total number of 83 fragment ions were used to deduce the complete sequence of a 10-mer oligonucleotide of mixed sequence from a tandem mass spectrum recorded on the TSQ. The complete sequence was also encoded in the 28 fragments that were obtained from the QIT under comparable fragmentation conditions. Spectrum complexity increased considerably at the cost of signal-to-noise ratio upon fragmentation of a 20-mer oligonucleotide in the TSQ, whereas spectrum interpretation with longer oligonucleotides was significantly more straightforward in spectra recorded on the QIT. The extent of fragmentation had to be optimized by appropriate setting of collision energy and choice of precursor ion charge state in order to obtain full sequence coverage by fragments for de novo sequencing. Moreover, full sequence information was also dependent on base sequence because of the low tendency of backbone cleavage at thymidines. Tandem mass spectrometry on the QIT yielded redundant information that was successfully utilized to deduce the complete sequence of 20-mer oligonucleotides with high confidence.  相似文献   

15.
Oligosaccharides were derivatized by reductive amination with benzylamine followed by N,N-dimethylation with methyl iodide and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and MALDI post-source decay (PSD) TOFMS. The resulting derivatives have a positive charge localized to the modified reducing end. The derivatization methodology was tested on maltoheptaose and three different human milk oligosaccharides. The approximate detection limit for the resulting carbohydrate derivatives was determined to be 50 fmol of the derivative loaded onto the target, corresponding to a tenfold increase in sensitivity compared with underivatized oligosaccharides. When the derivatives were analyzed by MALDI-PSD TOFMS the observed fragmentation pattern was dominated by fragment ions retaining the modified reducing terminus, thus simplifying the interpretation of the mass spectral data.  相似文献   

16.
The performance of triple-stage quadrupole (TSQ), quadrupole ion trap (QIT), and double focusing sector field (DFSF) mass spectrometers for the generation of fragment ions to obtain sequence information about oligonucleotides was compared. Upon electrospray ionization (ESI), the charge-state distribution of candidate precursor ions not only varied significantly with the type of mass spectrometer, but also with the size and sequence of the investigated oligonucleotides. While concentration limits of detection for an octanucleotide were in the 100 pmol/L range on the QIT and in the 5-10 nmol/L range on the TSQ and DFSF instruments, those of a 24-mer were in the 2-13 nmol/L range on all three instruments. Reproducibility of mass determination, an important prerequisite for reliable identification of fragment ions, was highest on the TSQ with 0.0037% relative standard deviation over three days. Finally, the tandem mass spectra of a dimethoxytritylated pentanucleotide recorded on the three instruments were compared. Relatively simple spectra dominated by complete series of fragment ions of the (a-B) and w type were obtained on the QIT. Complete series of (a-B) and w ions were also observed on the TSQ. However, additional fragments belonging to the b, c, d, x and z series were found in the spectrum. In the spectrum recorded after in-source fragmentation in the DFSF, only fragments corresponding to the loss of a nucleobase and a complete series of w ions were observed. All three mass spectrometers were suitable for the generation of fragment ions, from which the complete nucleotide sequence of the pentanucleotide could be deduced.  相似文献   

17.
This paper reports a newly developed technique that uses artificial neural networks to aid in the automated interpretation of peptide sequence from high-energy collision-induced dissociation (CID) tandem mass spectra of peptides. Two artificial neural networks classify fragment ions before the commencement of an iterative sequencing algorithm. The first neural network provides an estimation of whether fragment ions belong to 1 of 11 specific categories, whereas the second network attempts to determine to which category each ion belongs. Based upon numerical results from the two networks, the program generates an idealized spectrum that contains only a single ion type. From this simplified spectrum, the program’s sequencing module, which incorporates a small rule base of fragmentation knowledge, directly generates sequences in a stepwise fashion through a high-speed iterative process. The results with this prototype algorithm, in which the neural networks were trained on a set of reference spectra, suggest that this method is a viable approach to rapid computer interpretation of peptide CID spectra.  相似文献   

18.
An integrated analytical strategy for enrichment, detection and sequencing of phosphorylated peptides by matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) is reported. o-Phosphoric acid was found to enhance phosphopeptide ion signals in MALDI-MS when used as the acid dopant in 2,5-dihydroxybenzoic acid (2,5-DHB) matrix. The effect was largest for multiply phosphorylated peptides, which exhibited an up to ten-fold increase in ion intensity as compared with standard sample preparation methods. The enhanced phosphopeptide response was observed during MALDI-MS analysis of several peptide mixtures derived by proteolytic digestion of phosphoproteins. Furthermore, the mixture of 2,5-DHB and o-phosphoric acid was an excellent eluant for immobilized metal affinity chromatography (IMAC). Singly and multiply phosphorylated peptide species were efficiently recovered from Fe(III)-IMAC columns, reducing sample handling for phosphopeptide mapping by MALDI-MS and subsequent phosphopeptide sequencing by MALDI-MS/MS. The enhanced response of phosphopeptide ions in MALDI facilitates MS/MS of large (>3 kDa) multiply phosphorylated peptide species and reduces the amount of analyte needed for complete characterization of phosphoproteins.  相似文献   

19.
A general approach for the detailed characterization of sodium borohydride-reduced peptidoglycan fragments (syn. muropeptides), produced by muramidase digestion of the purified sacculus isolated from Bacillus subtilis (vegetative cell form of the wild type and a dacA mutant) and Bacillus megaterium (endospore form), is outlined based on UV matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nano-electrospray ionization (nESI) quadrupole ion trap (QIT) mass spectrometry (MS). After enzymatic digestion and reduction of the resulting muropeptides, the complex glycopeptide mixture was separated and fractionated by reversed-phase high-performance liquid chromatography. Prior to mass spectrometric analysis, the muropeptide samples were subjected to a desalting step and an aliquot was taken for amino acid analysis. Initial molecular mass determination of these peptidoglycan fragments (ranging from monomeric to tetrameric muropeptides) was performed by positive and negative ion MALDI-MS using the thin-layer technique with the matrix alpha-cyano-4-hydroxycinnamic acid. The results demonstrated that for the fast molecular mass determination of large sample numbers in the 0.8-10 pmol range and with a mass accuracy of +/-0.07%, negative ion MALDI-MS in the linear TOF mode is the method of choice. After this kind of muropeptide screening often a detailed primary structural analysis is required owing to ambiguous data. Structural data could be obtained from peptidoglycan monomers by post-source decay (PSD) fragment ion analysis, but not from dimers or higher oligomers and not with the necessary sensitivity. Multistage collision-induced dissociation (CID) experiments performed on an nESI-QIT instrument were found to be the superior method for structural characterization of not only monomeric but also of dimeric and trimeric muropeptides. Up to MS4 experiments were sometimes necessary to obtain unambiguous structural information. Three examples are presented: (a) CID MSn (n = 2-4) of a peptidoglycan monomer (disaccharide-tripeptide) isolated from B. subtilis (wild type, vegetative cell form), (b) CID MSn (n = 2-4) of a peptidoglycan dimer (bis-disaccharide-tetrapentapeptide) obtained from a B. subtilis mutant (vegetative cell form) and (c) CID MS2 of a peptidoglycan trimer (a linear hexasaccharide with two peptide side chains) isolated from the spore cortex of B. megaterium. All MS(n) experiments were performed on singly charged precursor ions and the MS2 spectra were dominated by fragments derived from interglycosidic bond cleavages. MS3 and MS4 spectra exhibited mainly peptide moiety fragment ions. In case of the bis-disaccharide-tetrapentapeptide, the peptide branching point could be determined based on MS3 and MS4 spectra. The results demonstrate the utility of nESI-QIT-MS towards the facile determination of the glycan sequence, the peptide linkage and the peptide sequence and branching of purified muropeptides (monomeric up to trimeric forms). The wealth of structural information generated by nESI-QIT-MSn is unsurpassed by any other individual technique.  相似文献   

20.
Several phospho- and sulfopeptides were subjected to atmospheric pressure thermal dissociation (APTD), which was effected by passing peptide ions generated by electrosonic spray ionization (ESSI) through a heated coiled metal tube. Sequence informative fragment ions including a-, b-, c-, and y-types of ions were observed with increased relative intensities under APTD compared with collision-induced dissociation (CID), performed inside the ion trap. A certain degree of preservation of phosphate and sulfate ester moieties was observed for some fragments ions under APTD. The neutral fragments generated outside the mass spectrometer were further analyzed via on-line corona discharge to provide rich and complementary sequence information to that provided by the fragment ions directly obtained from APTD, although complete losses of the modification groups were noted. Improved primary sequence information for phospho- and sulfopeptides was typically obtained by analyzing both ionic and neutral fragments from APTD compared with fragment ions from CID alone. Localization of the modification sites of phospho- and sulfopeptides was achieved by combining the structural information acquired from APTD and CID.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号