首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Cui  Q. Liu  X. Fu  X. Yan  H. Zhang  M. Gong 《Laser Physics》2009,19(10):1974-1976
A MOPA Nd:YAG laser with end-pumped zigzag slab architecture has been developed. 277 W laser output is obtained from the master-oscillator stage, corresponding to the average slope efficiency of 35.9% and the optical conversion efficiency of 34.6%, which emits the maximum power of 402 with 1163 W of pump power. Furthermore, the amplifier stage produces 505 W with the slope efficiency of 24% and the extraction efficiency of 25%. The beam quality is estimated as M x 2 ≈ 10, M y 2 ≈ 50 in the orthogonal directions respectively.  相似文献   

2.
A high-efficiency high-power diode-side-pumped quasi-continuous wave (QCW) Nd:YAG ceramic slab laser using zigzag optical path was demonstrated. With an integrating sphere technique, the scattering and absorption coefficient of the ceramic slab were measured to be 0.0024 and 0.0016 cm?1 at 1,064 nm, respectively. Under a pump power of 6.69 kW, an average output power of 2.44 kW at 1,064 nm with a repetition rate of 400 Hz was achieved, corresponding to an optical-to-optical efficiency of 36.5 %. As far as we know, this is the highest conversion efficiency reported for QCW side-pumped single slab Nd:YAG ceramic laser.  相似文献   

3.
A high-repetition rate master oscillator power amplifier pumped with laser diodes (LDs) is reported. An injection seeding single-frequency electro-optical Q-switched Nd:YAG laser is used as an oscillator, and a conductively cooled Nd:YAG zigzag slab with a bounce-pumped architecture is utilized as a power amplifier. Pulse energies of over 800 mJ at 1 064 nm and 400 mJ at 532 nm, corresponding to average powers of 200 and 100 W, respectively, are achieved with a 12.6-ns pulse width at 250 Hz. Output frequency fluctuations and single-frequency operation are further monitored. Experimental results reveal that the proposed system, which features a single-pass amplified configuration, is a promising design for space-based applications.  相似文献   

4.
Diode-pumped 250-W zigzag slab Nd:YAG oscillator amplifier system   总被引:5,自引:0,他引:5  
A laser-diode-pumped zigzag slab Nd:YAG master oscillator power amplifier (MOPA) system featuring high pulse energy and high average power was developed for pumping of an ultrashort-pulse laser system. The MOPA system consists of an oscillator, a preamplifier, two postamplifiers, and image-relay telescopes. The postamplifiers have an angle-multiplexed ring-type double-pass configuration. A pulse energy of 1.26 J and an average power of 251 W were obtained at a repetition rate of 200 Hz. The frequency-doubled power when a LiB(3)O(5) crystal was used was 105 W at a repetition rate of 170 Hz. The intensity profiles of the fundamental and the second harmonic are nearly top-hat shaped and are suitable for pumping.  相似文献   

5.
H. Liu  M. Gong 《Optics Communications》2010,283(6):1062-467
Corner-pumping is a new pumping scheme in diode-pumped all-solid-state lasers, having such advantages as high pump efficiency, favorable pump uniformity and low cost. Compact corner-pumped Nd:YAG/YAG composite slab lasers at 1064 nm with low or medium output powers and high efficiency are demonstrated in this paper. Combined with intracavity frequency doubling by a LBO crystal, a corner-pumped Nd:YAG/YAG composite slab 532 nm green laser with a stable output is realized successfully. The experimental results show that corner-pumping can reduce laser costs greatly, release the thermal effects of slab crystals and improve the output beam quality, and that the new pumping scheme is feasible in the design of diode-pumped all-solid-state lasers with low or medium output powers.  相似文献   

6.
刘欢  巩马理 《中国物理 B》2010,19(5):54209-054209
A corner-pumped type is a new pumping type in the diode-pumped all-solid-state lasers, which has the advantages of high pump efficiency and favourable pump uniformity. A highly efficient corner-pumped Nd:YAG/YAG composite slab laser is demonstrated in this paper. The maximal continuous-wave output power of the 1064~nm laser is up to 18.57~W with a slope efficiency and an optical-to-optical conversion efficiency of 44.9{\%} and 39.8{\%}, respectively. Inserting an acousto-optic $Q$-switch in the cavity, the highest average output power of the quasi-continuous wave 1064~nm laser of 6.73~W is obtained at a repetition rate of 9.26~kHz. The experimental results show that a corner-pumped type is a kind of feasible schedules in the design of diode-pumped all-solid-state lasers with low or medium output powers.  相似文献   

7.
We report a high power zigzag slab laser oscillator employing two composite Nd:YAG/YAG slab in the cavity. The CW laser output with the power of 401 W was achieved from the oscillator with the optical-optical efficiency of 32.6%. The beam quality is estimated as M x 2 ≈ 10, M y 2 ∼ 50 in the slab width and thickness direction, respectively.  相似文献   

8.
The operation of an eightfold longitudinally diode laser pumped 1.06m cw Nd:YAG slab laser is demonstrated. The 809 nm diode radiation is focused through a dichroic coating into each laser channel starting from the reflection points of the 1.06m beam in the slab crystal. At an absorbed pump power in the crystal of 2830 mW a maximum cw TEM00 output of 1075 mW was achieved with a corresponding slope efficiency of 42.5%.  相似文献   

9.
 We report the design and performance of conduction-cooled, edge-pumped, folded zig-zag continuous wave Nd:YAG slab laser. The Nd:YAG slab is pumped with waveguide coupled laser diode bars. The coupling efficiency of waveguide to laser diode radiation is 97%. In a folded zig-zag resonator, a maximum output power of 37 W in multimode operation is achieved for an incident pump power of nearly 180 W on the Nd:YAG slab. This corresponds to an optical-to-optical conversion efficiency of 20% and slope efficiency of 32%. We obtained more than 10 W of output power with the beam quality factors in the width dimension and in the thickness dimension equal to 8.  相似文献   

10.
Partially end-pumped Nd:YAG slab laser with a hybrid resonator   总被引:14,自引:0,他引:14  
Du K  Wu N  Xu J  Giesekus J  Loosen P  Poprawe R 《Optics letters》1998,23(5):370-372
A Nd:YAG slab is partially end pumped by a diode laser stack with three diode laser bars. The pumped volume has a rectangular cross section. A hybrid resonator, which is stable in the plane of small dimension and is off-axis unstable in the plane of large dimension of the gain cross section, was used to yield highly efficient laser operation at diffraction-limited beam quality. The laser design and experimental results are reported.  相似文献   

11.
刘欢  巩马理 《中国物理 B》2012,21(10):104208-104208
A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time.The maximum output power of the five-wavelength laser is 5.66 W with an optical-to-optical conversion efficiency of 11.3%.After a birefringent filter is inserted in the cavity,the five wavelengths can be separated successfully by rotating the filter.The maximum output powers of the 1064 nm,1074 nm,1112 nm,1116 nm,and 1123 nm lasers are 1.51 W,1.3 W,1.27 W,0.86 W,and 0.72 W,respectively.  相似文献   

12.
刘欢  王巍  巩马理 《物理学报》2013,62(14):144205-144205
报道了一种适合中小功率输出的全固态激光器的角抽运方法, 抽运光从板条激光器中板条晶体的角部入射, 可获得较高的抽运效率和较好的抽运均匀性.采用单角抽运方式, 首次进行了角抽运Nd:YAG复合板条946 nm连续运转激光器的实验研究. 激光腔采用紧凑型平凹直腔结构, 腔长仅为20 mm. 当注入抽运功率为50 W时, 946 nm激光连续输出功率最高达5.29 W, 光光转换效率为10.6%, 斜效率为12%. 整台激光器结构紧凑, 调谐简单, 成本低, 具有广阔的应用前景. 关键词: 角抽运 Nd:YAG晶体 连续波 946 nm激光  相似文献   

13.
HighpowerNd:YAGslablasersidepumpedbydiodelaserarrayCHENYouming;ZHOUFuzheng;HUWentao;LIZhishen;YANGXiangchun;WangZhijiang(Shan...  相似文献   

14.
We have examined the performance of a diode-laser side-pumped Nd:YAG laser using elliptical mirrors to focus the output of 6 × 10 W laser-diode arrays into the Nd: YAG rod. The multimode cw output power was 14 W with an optical to optical efficiency of 29%. With a resonator designed for TEM00 mode operation 12 W of output was achieved.  相似文献   

15.
 为了满足小型光电系统对微小型大功率激光器的研制要求,通过液态金属传热设计,提高散热效率,使得激光器在小体积下实现高能量输出。采用复合板条工作物质集成谐振腔以及激光放大技术,在激光电源电流80 A、工作频率为5 Hz时,激光器在1064 nm输出单脉冲能量为160 mJ,脉宽为6 ns,发散角为3 mrad的激光。  相似文献   

16.
Nd:YAG板状激光器的理论和实验研究   总被引:1,自引:1,他引:0  
本文对Nd:YAG板状激光器进行了理论和实验研究。给出了板状介质在重复率泵浦和连续泵浦情况下的温度分布和应力状态的解析解,对板的热效应进行了分析与讨论。并用一块9×30×70mm~3的Nd:YAG板状材料,对其热效应进行了测量与分析。实现了“之”字形光路板状激光器的高重复率运转,在50Hz时,输出能量约600mJ,平均功率30W。  相似文献   

17.
YAG : Nd grown under 98% Ar 2% H2 protective atmosphere free of nitrogen or hydrocarbons showed after UV irradiation broad absorption peaked at 1·9×104 cm–1 which disappeared relatively slowly at room temperature. It was more intensive in oxygen treated samples than in those annealed in hydrogsn. Transient absorption suppresses laser output by the increase of absorption at 0·94×104 cm–1 (1064 nm) and, particularly in CW mode, by the anomalous rod deformation. YAG : Nd containing Fe ions (2·10–4 wt%) showed no transient absorption.  相似文献   

18.
设计了一种高倍率的固体皮秒脉冲激光放大器,采用Nd:YAG板条作为激光增益介质。借助板条结构的角度选通结构,搭建了板条五通放大系统,实现了对注入皮秒脉冲激光的高倍率放大。种子源工作在脉冲模式,放大器泵浦源在连续模式工作。皮秒光纤激光器可以在不同的重复频率下工作,脉冲宽度为13.4 ps。种子光经过隔离和耦合系统之后,注入板条的单脉冲能量为25 nJ。当种子源工作重复频率为24.46 MHz时,板条放大器输出平均功率377 W,单脉冲能量15.5 μJ;当种子源工作重复频率为49.8 kHz时,板条放大器输出平均功率89 W,单脉冲能量1.8 mJ,峰值功率为134 MW,放大倍率达到7.2×104。  相似文献   

19.
A scheme of self-adaptive, closed-loop, diode-side-pumped Nd:YAG slab laser was presented. As a result of four-wave mixing of standing waves intersecting at a small angle in a closed-loop cavity, the self-adaptive process of beam cleaning leading to fundamental mode operation despite severe asymmetry of the inversion profile and thermal-optical distortion was achieved. The output beam was extracted from the cavity as the first- order diffraction beam on the dynamic gain gratings created in an active medium. The near-diffraction-limited (parameter M(2)<1.4, divergence of 1 mrad) output beam of 250 mJ energy and the optical slope efficiency of 30% at a repetition rate of up to 25 Hz in a free-running regime were demonstrated.  相似文献   

20.
为实现大尺寸、高储能的Nd:YAG板条激光增益介质模块的高可靠性工作,必须找到合适的封装工艺解决大尺寸无空洞、低热阻界面连接问题和界面低应力、低透射波前畸变问题。在充分了解板条激光增益介质和冷却单元的特性后,选择了延展性好的铟作为焊料,实验得到最佳焊料层厚度,通过改进封装工艺的钎焊技术将这两部分可靠地连接在一起。改进的封装工艺实现了钎焊面积大于40 cm2,空洞率小于0.5%,最大空洞面积小于1 mm2的技术指标,工艺重复性大于90%。通过对焊料层的优化实现了尺寸为150.2 mm30 mm2.5 mm板条激光增益介质静态透射波前畸变小于1 m,成品率优于80%,静态透射波前畸变小于1.5 m的模块成品率接近100%的技术指标。采用改进封装工艺焊接的单模块Nd:YAG板条激光器稳定输出功率达到4000 W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号