首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermal decomposition of beaverite and plumbojarosite was studied using a combination of thermogravimetric analysis coupled to a mass spectrometer. The mineral beaverite Pb(Fe,Cu)3(SO4)2(OH)6 decomposes in three stages attributed to dehydroxylation, loss of sulphate and loss of oxygen, which take place at 376 and 420, 539 and 844°C. In comparison three thermal decomposition steps are observed for plumbojarosite PbFe6(SO4)4(OH)12 at 376, 420 and 502°C attributed to dehydroxylation; loss of sulphate occurs at 599°C; and loss of oxygen and formation of lead occurs at 844 and 953°C. The temperatures of the thermal decomposition of the natural plumbojarosite were found to be less than that for the synthetic jarosite. A comparison of the thermal decomposition of plumbojarosite with argentojarosite is made. The understanding of the chemistry of the thermal decomposition of minerals such as beaverite, argentojarosite and plumbojarosite and related minerals is of vital importance in the study known as ‘archeochemistry’.  相似文献   

2.
The presence of arsenate compounds in soils and mineral dump leachates is common. One potential method for the removal of the arsenates from soils is through thermal treatment. High-resolution thermogravimetric analysis has been used to follow this thermal decomposition of selected vivianite arsenates. This decomposition occurs as a series of steps. The first two steps involve dehydration with 6 mol of water lost in the first step and two in the second. The third major weight loss step occurs in the 750-800 °C temperature range with de-arsenation. The application of infrared emission spectroscopy confirms the loss of water by around 250 °C and the loss of arsenic as arsenic pentoxide is observed by the loss of AsO stretching bands at around 826 cm−1. Thermal activation of arsenic contaminated soils may provide a method of decontamination.  相似文献   

3.
Thermogravimetry combined with mass spectrometry has been used to study the thermal decomposition of a synthetic ammonium jarosite. Five mass loss steps are observed at 120, 260, 389, 510 and 541°C. Mass spectrometry through evolved gases confirms these steps as loss of water, dehydroxylation, loss of ammonia and loss of sulphate in two steps. Changes in the molecular structure of the ammonium jarosite were followed by infrared emission spectroscopy (IES). This technique allows the infrared spectrum at the elevated temperatures to be obtained. IES confirms the dehydroxylation to have taken place by 300°C and the ammonia loss by 450°C. Loss of the sulphate is observed by changes in band position and intensity after 500°C.  相似文献   

4.
Thermogravimetry combined with mass spectrometry has been used to study the thermal decomposition of a synthetic hydronium jarosite. Five mass loss steps are observed at 262, 294, 385, 557 and 619°C. The mass loss step at 557°C is sharp and marks a sharp loss of sulphate as SO3 from the hydronium jarosite. Mass spectrometry through evolved gases confirms the first three mass loss steps to dehydroxylation, the fourth to a mass loss of the hydrated proton and a sulphate and the final step to the loss of the remaining sulphate. Changes in the molecular structure of the hydronium jarosite were followed by infrared emission spectroscopy. This technique allows the infrared spectrum at the elevated temperatures to be obtained. Infrared emission spectroscopy confirms the dehydroxylation has taken place by 400 and the sulphate loss by 650°C. Jarosites are a group of minerals formed in evaporite deposits and form a component of the efflorescence. The minerals can function as cation and heavy metal collectors. Hydronium jarosite has the potential to act as a cation collector by the replacement of the proton with a heavy metal cation.  相似文献   

5.
Raman spectroscopy complimented by infrared spectroscopy has been used to study the mineral hemimorphite from different origins. The Raman spectra show consistently similar spectra with only one sample showing additional bands due to the presence of smithsonite. Raman bands observed at 3510–3565 and 3436–3455 cm−1 are assigned to OH stretching vibrations. Using a Libowitzky type formula, these OH bands provide hydrogen bond distances of 0.2910, 0.2825, 0.2762 and 0.2716 pm. Water bending modes are observed in the Raman spectrum at 1633 cm−1. An intense Raman band at 930 cm−1 is attributed to SiO symmetric stretching vibration of the Si2O7 units. Raman bands observed at 451 and 400 cm−1are attributed to out-of-plane bending vibrations of the Si2O7 units. Raman bands at 330, 280, 168 and 132 cm−1 are assigned to ZnO and OZnO vibrations.  相似文献   

6.
Polyaniline base has been exposed to various temperatures between 100 °C and 1000 °C for 2 h in air. The mass loss has increased with increasing temperature. FTIR and Raman spectroscopies show the gradual destruction of the PANI structure, the possible formation of intermediate oxime and nitrile groups, and the final conversion to graphitic material. The elemental analysis confirmed the dehydrogenation while the content of nitrogen was nearly constant even after treatment at 800 °C. The conductivity of PANI base, 10−8 S cm−1, increased to ∼10−4 S cm−1 after treatment at 1000 °C; most of the products, however, were non-conducting. Another series of experiments involved the polyaniline base heated at 500 °C for 1-8 h. The studies were performed in connection with the potential flame-retardant application of polyaniline.  相似文献   

7.
Summary A combination of thermogravimetry and hot stage Raman spectroscopy has been used to study the thermal decomposition of the synthesised zinc substituted takovite Zn6Al2CO3(OH)16·4H2O. Thermogravimetry reveals seven mass loss steps at 52, 135, 174, 237, 265, 590 and ~780°C. MS shows that the first two mass loss steps are due to dehydration, the next two to dehydroxylation and the mass loss step at 265°C to combined dehydroxylation and decarbonation. The two higher mass loss steps are attributed to decarbonation. Raman spectra of the hydroxyl stretching region over the 25 to 200°C temperature range, enable identification of bands attributed to water stretching vibrations, MOH stretching modes and strongly hydrogen bonded CO32--water bands. CO32- symmetric stretching modes are observed at 1077 and 1060 cm-1. One possible model is that the band at 1077 cm-1is ascribed to the CO32- units bonded to one OH unit and the band at 1092 cm-1is due to the CO32- units bonded to two OH units from the Zn-takovite surface. Thermogravimetric analysis when combined with hot stage Raman spectroscopy forms a very powerful technique for the study of the thermal decomposition of minerals such as hydrotalcites.</o:p>  相似文献   

8.
Summary High resolution thermogravimetric analysis has been used to study the thermal decomposition of montmorillonite modified with octadecyltrimethylammonium bromide. Thermal decomposition occurs in 4 steps.The first step of mass loss is observed from ambient to 100°C temperature range and is attributed to dehydration of adsorbed water. The second step of mass loss occurs between 87.9 to 135.5°C temperature range and is also attributed to dehydration of water hydrating metal cations such as Na+. The third mass loss occurs between 179.0 and 384.5°C; it is assigned to the loss of surfactant. The fourth step is ascribed to the loss of OH units due to dehydroxylation of the montmorillonite and takes place between 556.0 and 636.3°C temperature range. These TG steps are related to the arrangement of the surfactant molecules intercalating the montmorillonite. Changes in the basal spacing of the clay with surfactant are followed by X-ray diffraction. Thermal analysis provides an indication of the stability of the organo-clay.  相似文献   

9.
The thermal decomposition of syngenite, K2Ca(SO4)2·H2O, formed during the treatment of liquid manure has been studied by thermal gravimetric analysis, differential scanning calorimetry, high temperature X-ray diffraction (XRD) and infrared emission spectroscopy (IES). Gypsum was found as a minor impurity resulting in a minor weight loss due to dehydration around 100 °C. The main endothermic dehydration and decomposition stage of syngenite to crystalline K2Ca2(SO4)3 and amorphous K2SO4 is observed around 200 °C. The reaction involves a solid-state re-crystallisation, while water and the K2SO4 diffuse out of the existing lattice. The additional weight loss steps around 250 and 350 °C are probably due to presence of larger syngenite particles, which exhibit slower decomposition due to the slower diffusion of water and K2SO4 out of the crystal lattice. A minor endothermic sulphate loss around 450 °C is not due to the decomposition of syngenite or its products or of the gypsum impurity. The origin of this sulphate is not clear.  相似文献   

10.
S Vairam 《Thermochimica Acta》2004,414(2):263-270
Some new hydrazinium salts of benzene tricarboxylic and tetracarboxylic acids have been prepared by neutralisation of these acids with hydrazine hydrate in aqueous medium and characterised by conductance measurement, IR spectral and thermal analyses. Hemimellitic acid (H3hml) forms monohydrazinium salt, trimellitic acid (H3tml) and trimesic acid (H3tms), mono and dihydrazinium salts, and pyromellitic acid (H4pml) all the four salts with hydrazine hydrate. Conductance study indicates their electrolytic nature. IR spectra of all the salts show NN stretching frequencies of the N2H5+ in the region of 960-990 cm−1. The hemimellitate salt undergoes endothermic dehydrazination at 154 °C, trimellitates and pyromellitates in the range of 191-271 °C, and trimesates in the range of 267-332 °C. Trimesates decompose to give CO2 around 337 °C. All the salts then undergo strong exothermic decomposition in the range of 517-595 °C via the formation of respective acid intermediates first, then arenes, yielding carbon residue. A comparison of the thermal behaviour of pure acids with that of their salts reveals the fact that the acids do not withstand high temperature like salts. They show sharp endotherms at their melting points and then they decompose exothermally before 400 °C to give carbon residue.  相似文献   

11.
Polyaniline (PANI) base has been suspended in 9 M potassium hydroxide at 20 °C or 90 °C for various time intervals extending to 4 months. The fraction of acetone-soluble material increased from 1.2 wt.% to 4.5 wt.% after exposure to an alkaline medium for 60 days at 20 °C. Gel-permeation chromatography indicates that the aggregation of PANI is reduced, while the chain degradation itself is negligible. FTIR spectroscopy confirms this trend and the absence of hydrolytic changes in the PANI structure. Polyaniline retains the ability to be reprotonated with a 1 M sulfuric acid to a conducting form. No marked changes in the molecular structure have been found, even after suspension of PANI in 9 M KOH at 90 °C for 60 days.Similar immersion of PANI salt in 5 M sulfuric acid at 20 °C was responsible for changes in the protonation, and the mass increased by 11 wt.%. This was explained by the exchange of the original sulfate or chloride counter-ions for hydrogen sulfate anions or by the protonation of secondary amine sites in PANI in addition to imine ones. The changes in the molecular structure are discussed on the basis of FTIR spectra. The conductivity decreased from 1.2 S cm−1 to ∼10−3 S cm−1 but no time-dependence of conductivity was observed. There was no fraction of PANI soluble in acetone. PANI in the protonated state is thus stable also in the strongly acidic medium.The study is supplemented by the assessment of the thermal stability of PANI base, which is of importance for the processing of PANI. Loss of moisture has been observed after exposure to 250 °C for 10 h in both nitrogen atmosphere and in air. Good stability was found at 350 °C only in the nitrogen atmosphere, while a marked mass loss in weight was registered in air.  相似文献   

12.
A thermogravimetric study of the alunites of sodium, potassium and ammonium   总被引:1,自引:0,他引:1  
Thermogravimetry in tandem with mass spectrometry has been used to characterise the thermal decomposition of synthetic alunites of potassium, sodium and ammonium. Three mechanisms of decomposition are observed (a) dehydration, (b) dehydroxylation and (c) desulphation. The thermal decomposition of the three alunites is different. For NH4-alunite, an additional process of de-ammoniation is observed which occurs simultaneously with dehydration. Dehydroxylation takes place in a series of four steps. De-sulphation occurs for K-alunite at 680 °C in a single step in comparison with Na and NH4 alunites where de-sulphation is observed in a series of four steps. The temperature of desulphation is cation dependent. The thermal decomposition is not completed until around 800 °C.  相似文献   

13.
Thermal decomposition of jarosites of potassium,sodium and lead   总被引:1,自引:0,他引:1  
Summary Jarosites are a group of minerals formed in evaporite deposits and form a component of efflorescence. As such the minerals can function as cation and heavy metal collectors. Thermogravimetry coupled to mass spectrometry has been used to study three Australian jarosites which are predominantly K, Na and Pb jarosites. Mass loss steps of K-jarosite occur over the 130 to 330 and 500 to 622°C temperature range and are attributed to dehydroxylation and desulphation. In contrast the behaviour of the thermal decomposition of Na-jarosite shows three mass loss steps at 215 to 230, 316 to 352 and 555 to 595°C. The first mass loss step for Na-jarosite is attributed to deprotonation. For Pb-jarosite two mass loss steps associated with dehydroxylation are observed at 390 and 418°C and a third mass loss step at 531°C is attributed to the loss of SO3. Thermal analysis is an excellent technique for the study of jarosites. The analysis depends heavily on the actual composition of the jarosite.  相似文献   

14.
The thermal decomposition of natural iowaite of formula Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O was studied by using a combination of thermogravimetry and evolved gas mass spectrometry. Thermal decomposition occurs over a number of mass loss steps at 60°C attributed to dehydration, 266 and 308°C assigned to dehydroxylation of ferric ions, at 551°C attributed to decarbonation and dehydroxylation, and 644, 703 and 761°C attributed to further dehydroxylation. The mass spectrum of carbon dioxide exhibits a maximum at 523°C. The use of TG coupled to MS shows the complexity of the thermal decomposition of iowaite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. Humboldtine as the natural iron(II) oxalate mineral is a classic example. Thermogravimetry coupled to evolved gas mass spectrometry shows dehydration takes place in two steps at 130 and 141°C. Loss of the oxalate as carbon dioxide occurs at 312 and 332°C. Dehydration is readily followed by Raman microscopy in combination with a thermal stage and is observed by the loss of intensity of the OH stretching vibration at 3318 cm-1. The application of infrared emission spectroscopy supports the results of the TG-MS. Three Raman bands are observed at 1470, 1465 and 1432 cm-1 attributed the CO symmetric stretching mode. The observation of the three bands supports the concept of multiple iron(II) oxalate phases. The significance of this work rests with the ability of Raman spectroscopy to identify iron(II) oxalate which often occurs as a film on a host rock.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
A series of selected pyromorphite minerals Pb5(PO4)3Cl from different Australian localities has been studied by Raman spectroscopy complemented with selected infrared spectroscopy. The Raman spectrum of unsubstituted pyromorphite shows a single band at around 920 cm−1 but for the natural minerals two bands at 919 and ∼932 cm−1 attributed to the ν1 (PO4)3− stretching vibration. The observation of multiple bands is attributed to the non-equivalence of phosphate units in the pyromorphite structure and the reduction in symmetry of the (PO4)3− units. This symmetry reduction is confirmed by the observation of multiple bands in both the ν4 bending region (500–595 cm−1) and the ν2 bending region (350–500 cm−1). The presence of isomorphic substitution of (PO4)3− by (AsO4)3− units is identified by the ν1 symmetric stretching bands at around 824 and 851 cm−1 and the ν2 bending region around 331 and 354 cm−1. Contrary to expectation Raman bands in the 3320–3700 cm−1 region are observed and assigned to OH stretching bands of OH units resulting from the substitution of chloride anions in the pyromorphite structure. This study brings in to question the actual formula of natural pyromorphite as it is better represented as Pb5(PO4,AsO4)3(Cl,OH) · xH2O.  相似文献   

17.
Coatings of PEEK (poly-ether-ether-ketone) have been produced on stainless steel 304 using the High Velocity Air Fuel (HVAF) thermal spray technique. These coatings were produced using 50 and 100 mm nozzle lengths with 200, 300 and 400 mm gun to substrate distances. The thermal degradation of the PEEK during the production of the coatings was assessed with valence band X-ray Photoelectron Spectroscopy (XPS) and attenuated total reflectance Fourier Transform Infrared Spectroscopy (ATR FT-IR). Valence band XPS shows that in general there is minimal degradation of the PEEK during the HVAF thermal spraying process. The FT-IR results show that at the 200 mm gun to substrate (standoff) distance for both nozzle lengths there is more surface degradation of the PEEK coating than at the longer gun to substrate distances. Specifically absorption bands appeared at 2918 and 2850 cm−1, which correspond to alkane -CH2- asymmetric stretching modes. The reduction of the 1250 cm−1 band as compared with the 1220 cm−1 band, both representing the stretching modes of the ether bonds in PEEK suggests that the degradation occurs at only one of the ether bonds. The phenyl C-H vibration at 673 cm−1 was split for coatings produced at gun-substrate distance of 200 and 300 mm. This indicates a structural change in the phenyl ring possibly indicating a change in the extent of crystallinity of the PEEK polymer.  相似文献   

18.
The thermal stability of starch cross-linked with tetraethylene glycol diacrylate was studied under nitrogen atmosphere by thermogravimetry (TG) and infrared spectroscopy (FTIR). The cross-linking reaction was confirmed by the increase in intensity of the absorption band at ca. 3330 cm−1 indicating the reinforcement of hydrogen bonds and the appearance of a new band at 1726 cm−1 associated with the carbonyl group of the cross-linking agent. After cross-linking the solubility of starch in water decreased to the range 9%-16%. The thermogravimetric curves of pure and cross-linked starches showed an initial stage of degradation (up to ca. 150 °C) associated with the loss of water. The main stage of degradation occurred in the range 250-400 °C corresponding to ca. 60%-70% mass loss. The activation energy (E) for the degradation process increased from 145 kJ mol−1 (pure starch) to 195 kJ mol−1 and 198 kJ mol−1 for starch treated for 60 min by UV (30 °C) and at 90 °C, suggesting high stability after cross-linking. A higher value (240 kJ mol−1) was obtained for starch treated by UV for 120 min. The main volatile products determined by FTIR which correspond to hydrocarbons and carbonyl groups are apparently associated with the scission of weak bonds in the chain (probably branched groups) and the scission of stronger bonds (glycosidic linkages), respectively.  相似文献   

19.
The minerals mimetite Pb5(AsO4)3Cl, arsenian pyromorphite Pb5(PO4,AsO4)3Cl and hedyphane Pb3Ca2(AsO4)3Cl have been studied by Raman spectroscopy complimented with infrared spectroscopy. Mimetite is characterised by a band at 812–3 cm−1 attributed to the Ag mode. For the arsenian pyromorphite this band is observed at 818 cm−1 and for hedyphane at 819 cm−1. For mimetite and hedyphane bands at 788 and 765 cm−1 are attributed to Au and E1u vibrational modes and are both Raman and infrared active. For the arsenian pyromorphite, Raman bands at 917–1014 cm−1 are attributed to phosphate stretching vibrations. Raman spectroscopy clearly identifies bands attributable to isomorphous substitution of arsenate by phosphate. The observation of low intensity bands in the 3200–3550 cm−1 region are assigned to adsorbed water and OH units, thus indicating some replacement of chloride ions with hydroxyl ions.  相似文献   

20.
Structural evolution of WOx species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the WO bond was observed at 962 cm−1 in the dried sample, which vanished between 300 and 700 °C, and reappear again after annealing at 800 °C, along with a broad band centered at 935 cm−1, attributed to the v1 vibration of WO in tetrahedral coordination. At 900 and 1000 °C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm−1, corresponding to the symmetric and asymmetric vibration of WO bonds in Na2WO4 and Na2W2O7 phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 °C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 °C. At 1000 °C, anatase phase partially converted into rutile. After annealing at 1000 °C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO2 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号