首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chang  W. K.  Ibrahim  R. A. 《Nonlinear dynamics》1997,12(3):275-303
The random excitation of a suspended cable with simultaneous internal resonances is considered. The internal resonances can take place among the first in-plane and the first two out-of-plane modes. The external loading is represented by a wide-band random process. The response statistics are estimated using the Fokker-Planck-Kolmogorov (FPK) equation, together with Gaussian and non-Gaussian closures. Monte Carlo simulation is also used for numerical verification. The unimodal in-plane motion exists in regions away from the internal resonance condition. The mixed mode interaction is manifested within a limited range of internal detuning parameters, depending on the excitation power spectrum density and damping ratios. The Gaussian closure scheme failed to predict bounded solutions of mixed mode interaction. The non-Gaussian closure results are in good agreement with the Monte Carlo simulation. The on-off intermittency of the autoparametrically excited modes is observed in the Monte Carlo simulation over a small range of excitation levels. The influence of the cable parameters, such as damping ratios, sag-to-span ratio, internal detuning parameters, and excitation level on the autoparametric interaction, is studied. It is found that the internal detuning and excitation level are the two main parameters which affect the autoparametric interaction among the three modes. Due to the system's nonlinearity, the response of the three modes is strongly non-Gaussian and the coupled modes experience irregular modulation.  相似文献   

2.
The primary objective of this paper is to examine the random response characteristics of coupled nonlinear oscillators in the presence of single and simultaneous internal resonances. A model of two coupled beams with nonlinear inertia interaction is considered. The primary beam is directly excited by a random support motion, while the coupled beam is indirectly excited through autoparametric coupling and parametric excitation. For a single one-to-two internal resonance, we used Gaussian and non-Gaussian closures, Monte Carlo simulation, and experimental testing to predict and measure response statistics and stochastic bifurcation in the mean square. The mean square stability boundaries of the coupled beam equilibrium position are obtained by a Gaussian closure scheme. The stochastic bifurcation of the coupled beam is predicted theoretically and experimentally. The stochastic bifurcation predicted by non-Gaussian closure is found to take place at a lower excitation level than the one predicted by Gaussian closure and Monte Carlo simulation. It is also found that above a certain excitation level, the solution obtained by non-Gaussian closure reveals numerical instability at much lower excitation levels than those obtained by Gaussian and Monte Carlo approaches. The experimental observations reveal that the coupled beam does not reach a stationary state, as reflected by the time evolution of the mean square response. For the case of simultaneous internal resonances, both Gaussian and non-Gaussian closures fail to predict useful results, and attention is focused on Monte Carlo simulation and experimental testing. The effects of nonlinear coupling parameters, internal detuning ratios, and excitation spectral density level are considered in both investigations. It is found that both studies reveal common nonlinear features such as bifurcations in the mean square responses of the coupled beam and modal interaction in the neighborhood of internal resonances. Furthermore, there is an upper limit for the excitation level above which the system experiences unbounded response in the neighborhood of simultaneous internal resonances.  相似文献   

3.
The stochastic bifurcation and response statistics of nonlinear modal interaction under parametric random excitation are studied analytically, numerically and experimentally. Two basic definitions of stochastic bifurcation are first introduced. These are bifurcation in distribution and bifurcation in moments. bifurcation in moments is examined for the case of a coupled oscillator subjected to parametric filtered white noise. The center frequency of the excitation is selected to be close to either twice the first mode or second mode natural frequencies or the sum of the two. The stochastic bifurcation in moments is predicted using the Fokker-Planck equation together with gaussian and non-Gaussian closures and numerically using the Monte Carlo simulation. When one mode is parametrically excited it transfers energy to the other mode due to nonlinear modal interaction. The Gaussian closure solution gives close results to those predicted numerically only in regions well remote from bifurcation points. However, bifurcation points predicted by the non-Gaussian closure are in good agreement with those estimated by numerical simulation. Depending on the excitation level, the probability density of the excited mode is strongly non-Gaussian and exhibits multi-maxima as predicted by Monte Carlo simulation. Experimental tests are carried out at relatively low excitation levels. In the neighborhood of stochastic bifurcation in mean square the measured results exhibit different regimes of response characteristics including zero motion and occasional small random motion regimes. These two regimes are characterized by the phenomenon of on-off intermittency. Both regimes overlap and thus it is difficult to locate experimentally the bifurcation point.  相似文献   

4.
—An analysis of non-linear flutter of a simply-supported panel exposed to supersonic gas flow and random in-plane forces is presented for two- and three-mode interactions. A first order quasi-steady state aerodynamic piston theory is used to model the aerodynamic loading. The Fokker-Planck equation is used to derive a general moment equation for two- and three-mode interactions. For stability analysis the moment equation is consistent and the mean square stability boundaries of the equilibrium are obtained in terms of the system parameters. The stability boundaries reveal common features to those predicted by the deterministic theory of panel nutter. For the non-linear response the moment equation is found inconsistent and a cumulant-neglect closure is used by setting cumulants of fifth and sixth orders to zero. This first order non-Gaussian closure is carried out to solve for the response statistics in terms of the air-to-plate mass ratio, aerodynamic pressure, modal damping, and in-plane random force spectral density. It is found that the non-Gaussian solution yields higher levels for the response statistics than those obtained by the Gaussian solution. The inclusion of more modes results in a reduction of the response levels and expands the stability region.  相似文献   

5.
Zheng  G.  Ko  J. M.  Ni  Y. Q. 《Nonlinear dynamics》2002,30(1):55-70
In this paper, super-harmonic and internal resonance characteristics ofa viscously damped cable with nearly commensurable natural frequenciesare investigated by use of a novel method. The proposed frequency-domainsolution method is based on the combined use of a three-dimensionalnonlinear finite element approach and the incremental harmonic balancetechnique. It is an accurate algorithm in the sense that it accommodatesmulti-harmonic components and no mode-based model reduction is utilizedin the solution process. The alternating frequency/amplitude-controlledalgorithm enables complete solution to the frequency-response curvesincluding unstable branches, sub- and super-harmonic resonance andinternal resonance. A suspended cable paradigm under internal resonancecondition is studied using the proposed method. Nonlinear response andmodal interaction characteristics of the cable at different frequencyregions are identified from analysis of response profiles and harmoniccomponent features. The super-harmonic and internal resonance responsesare respectively characterized based on the harmonic distribution. Underan in-plane harmonic excitation, the two-to-one internal resonancebetween the in-plane and out-of-plane modes and the super-harmonicresonance around the second symmetric in-plane mode are revealed. Strongnonlinear interaction among different modes in the parameter spaceranging from primary resonance to super-harmonic resonance is observed.  相似文献   

6.
斜拉桥拉索在轴向窄带随机激励下的振动响应   总被引:1,自引:0,他引:1  
顾明  任淑琰 《力学学报》2008,40(6):804-811
导出了拉索在考虑垂度以及索张力沿索长变化时的参激随机微分方程,进一步给出了预测拉索在窄带随机激励下响应的近似理论解------用统计矩截断法求解矩方程,获得高斯闭合解和一阶非高斯闭合解. 以南京长江二桥约330米长的A20拉索为研究对象,对以上高斯闭合解和一阶非高斯闭合解进一步进行数值求解以获得拉索的响应,并采用Monte-Carlo数值方法对求解进行验证. 分析了拉索振动的一般特征,特别分析了激励中心频率和拉索频率比为1和2时的响应随激励带宽的变化特征,得到了一些新的结论.   相似文献   

7.
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom system with one modal coordinate for the in-plane displacement and one for the out-of-plane displacement. At first harmonic varying chord elongation at excitation frequencies close to the corresponding eigenfrequencies of the cable is considered in order to identify stable modes of vibration. Depending on the initial conditions the system may enter one of two states of vibration in the static equilibrium plane with the out-of-plane displacement equal to zero, or a whirling state with the out-of-plane displacement different from zero. Possible solutions are found both analytically and numerically. Next, the chord elongation is modelled as a narrow-banded Gaussian stochastic process, and it is shown that all the indicated harmonic solutions now become instable with probability one. Instead, the cable jumps randomly back and forth between the two in-plane and the whirling mode of vibration. A theory for determining the probability of occupying either of these modes at a certain time is derived based on a homogeneous, continuous time three states Markov chain model. It is shown that the transitional probability rates can be determined by first-passage crossing rates of the envelope process of the chord wise component of the support point motion relative to a safe domain determined from the harmonic analysis of the problem.  相似文献   

8.
A non-Gaussian closure scheme is developed for determining the stationary response of dynamic systems including non-linear inertia and stochastic coefficients. Numerical solutions are obtained and examined for their validity based on the preservation of moments properties. The method predicts the jump phenomenon, for all response statistics at an excitation level very close to the threshold level of the condition of almost sure stability. In view of the increased degree of non-linearity, resulting from the non-Gaussian closure scheme, the mean square of the response displacement is found to be less than those values predicted by other methods such as the Gaussian closure or the first order stochastic averaging.  相似文献   

9.
悬索在考虑1:3内共振情况下的动力学行为   总被引:2,自引:0,他引:2  
研究了悬索在受到外激励作用下考虑1∶3内共振情况下的两模态非线性响应.对于一定范围内悬索的弹性-几何参数而言,悬索的第三阶面内对称模态的固有频率接近于第一阶面内对称模态固有频率的三倍,从而导致1∶3内共振的存在.首先利用Galerkin方法把悬索的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到主共振情况下的平均方程.接下来对平均方程的稳态解、周期解以及混沌解进行了研究.最后利用Runge-Kutta法研究了悬索两自由度离散模型的非线性响应.  相似文献   

10.
Hijawi  M.  Ibrahim  R. A.  Moshchuk  N. 《Nonlinear dynamics》1997,12(2):155-197
This paper deals with the dynamic response of nonlinear elastic structure subjected to random hydrodynamic forces and parametric excitation using a first- and second-order stochastic averaging method. The governing equation of motion is derived by using Hamilton's principle, taking into account inertia and curvature nonlinearities and work done due to hydrodynamic forces. Within the framework of first-order stochastic averaging, the system response statistics and stability boundaries are obtained. Unfortunately, the effects of nonlinear inertia and curvature are not reflected in the final results, since the contribution of these nonlinearities is lost during the averaging process. In the absence of hydrodynamic forces, the method fails to give bounded response statistics, and the analysis yields stability conditions. It is the second-order stochastic averaging which can capture the influence of stiffness and inertia nonlinearities that were lost in the first-order averaging process. The results of the second-order averaging are compared with those predicted by Gaussian and non-Gaussian closures and by Monte Carlo simulation. In the absence of parametric excitation, the non-Gaussian closure solutions are in good agreement with Monte Carlo simulation. On the other hand, in the absence of hydrodynamic forces, second-order averaging gives more reliable results in the neighborhood of stochastic bifurcation. However, under pure parametric random excitation, the stochastic averaging and Monte Carlo simulation predict the on-off intermittency phenomenon near bifurcation point, in addition to stochastic bifurcation in probability.  相似文献   

11.
研究了桥面侧振引起的斜拉索非线性振动问题。基于Hamilton原理建立了拉索的非线性振动控制方程,并利用多尺度法得到了斜拉索振动方程的二阶近似解。通过具体算例分析了斜拉索面内一阶模态与面外一阶模态相互耦合发生内共振的可能性,讨论了拉索倾斜角对拉索振动的影响,比较了在零初始条件和非零初始条件下拉索振动响应的区别。研究发现:拉索内共振发生在一定的激励频率和激励幅值区域内;改变倾斜角度,会影响拉索发生内共振时激励频率区域的大小;初始条件的不同,拉索的振动形式会相差很大。  相似文献   

12.
吕建根  康厚军 《力学季刊》2016,37(3):572-580
本文研究桥梁工程中含弯曲刚度斜拉索的面内面外内共振问题.描述了工程中斜拉索变形的三种状态,考虑弯曲刚度、大变形及垂度等因素,忽略斜拉索纵向惯性力的影响,运用Hamilton变分原理建立了含弯曲刚度的斜拉索面内面外耦合偏微分控制方程,采用Galerkin方法对偏微分方程离散,并运用多尺度摄动方法进行了求解,获得了斜拉索可能存在的内共振模式,以工程中一根斜拉索为例,运用有限元法对其进行动力特性分析,列出了斜拉索前10阶面内面外振动频率,找出面内面外可能产生内共振的模态,分别研究了主共振条件下斜拉索面内和面外1:1、2:1内共振情形,获得了有意义的结论.  相似文献   

13.
A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-plane and out-of-plane dynamics of the inclined CFRP cable are obtained by Hamilton's principle. The linear eigenvalues are explored theoretically. Then, the ordinary differential equations for analyzing the dynamic behaviors are obtained by the Galerkin integral and dimensionless treatments.The steady-state solutions of the nonlinear equations are obtained by the multiple scale method(MSM) and the Newton-Raphson method. The frequency-and force-response curves are used to investigate the dynamic behaviors of the inclined CFRP cable under simultaneous internal(between the lowest in-plane and out-of-plane modes) and external resonances, i.e., the primary resonances induced by the excitations of the in-plane mode,the out-of-plane mode, and both the in-plane mode and the out-of-plane mode, respectively. The effects of the key parameters, e.g., Young's modulus, the excitation amplitude,and the frequency on the dynamic behaviors, are discussed in detail. Some interesting phenomena and results are observed and concluded.  相似文献   

14.
斜拉桥中拉索承受着多种端部激励,可激发大幅空间振动.以斜拉索为对象,探究不同端部激励间相位差对其非线性振动的影响.首先,推导斜拉索无量纲离散控制方程,引入考虑相位的三向端部激励得到一般化模型;然后,针对拉索下端存在的纵桥向、竖向和横桥向激励的两两组合,受大幅或小幅激励,及其在主共振区或主参数共振区几组因素,共计12种工况,采用数值分析法分别研究了各工况下不同激励相位差时的斜拉索稳态响应.研究发现:激励相位差能加剧与激励频率相近的面内、外模态振动;在任意端部激励组合下,激励相位差不仅可使斜拉索非线性振动出现定量变化,还可改变内共振的表现形式.面内、外激励组合下,相位差对拉索响应幅值的影响以π为周期变化,且当相位差趋于π/2 + kπ (k = 0, 1, 2…)时影响最为突出;而面内激励组合下,以2π为变化周期,当相位差为π + 2kπ (k = 0, 1, 2, …)时其对稳态幅值的影响最显著.其原因是:面外激励关于拉索所在的竖直面对称,故其本质上以π为周期;而面内激励无此对称性,仍以2π为周期.因此,有无面外激励参与决定了激励间相位差对斜拉索响应的影响规律.  相似文献   

15.
The nonlinear oscillations of a controlled suspended elastic cable under in-plane excitation are considered. Active control realized by longitudinal displacement of one support is introduced in order to reduce the transverse in-plane and out-of-plane vibrations. Linear and quadratic enhanced velocity feedback control laws are chosen and their effects on the cable motion are investigated using a two degree-of-freedom model. Perturbation analysis is performed to determine the in-plane steady-state solutions and their stability under an out-of-plane disturbance. The analysis is extended to the bifurcated two-mode steady-state oscillations in the region of parametric excitation. The dependence of the control effectiveness on the system parameters is investigated in the case of the first symmetric mode and the range of oscillation amplitudes in which the proposed control ensures a dissipation of energy is determined. Although control based only on in-plane response quantities is effective in reducing oscillations with a prevailing in-plane component, addition of out-of-plane measures has to be considered when the motion is characterized by two comparable components.  相似文献   

16.
In this study, the forced vibration of a curved pipe conveying fluid resting on a nonlinear elastic foundation is considered. The governing equations for the pipe system are formed with the consideration of viscoelastic material, nonlinearity of foundation, external excitation, and extensibility of centre line. Equations governing the in-plane vibration are solved first by the Galerkin method to obtain the static in-plane equilibrium configuration. The out-of-plane vibration is simplified into a constant coefficient gyroscopic system. Subsequently, the method of multiple scales (MMS) is developed to investigate external first and second primary resonances of the out-of-plane vibration in the presence of three-to-one internal resonance between the first two modes. Modulation equations are formed to obtain the steady state solutions. A parametric study is carried out for the first primary resonance. The effects of damping, nonlinear stiffness of the foundation, internal resonance detuning parameter, and the magnitude of the external excitation are investigated through frequency response curves and force response curves. The characteristics of the single mode response and the relationship between single and two mode steady state solutions are revealed for the second primary resonance. The stability analysis is carried out for these plots. Finally, the approximately analytical results are confirmed by the numerical integrations.  相似文献   

17.
This paper presents the experimental results of random excitation of a nonlinear two-degree-of-freedom system in the neighborhood of internal resonance. The random signals of the excitation and response coordinates are processed to estimate the mean squares, autocorrelation functions, power spectral densities, and probability density functions. The results are qualitatively compared with those predicted by the Fokker-Planck equation together with a non-Gaussian closure scheme. The effects of system damping ratios, nonlinear coupling parameter, internal detuning ratio, and excitation spectral density level are considered in both studies except the effect of damping ratios is not considered in the experimental investigation. Both studies reveal similar dynamic features such as autoparametric absorber effect and stochastic instability of the coupled system. The experimental results show that the autocorrelation function of the coupled system has the feature of ultra narrow band process and degenerates to a periodic one as the internal detuning departs from the exact internal resonance condition. The measured probability density functions of the response of the main system suggests that the Gaussian representation is sufticient as long as the excitation level is relatively low in the neighborhood of the system internal resonance condition.  相似文献   

18.
The classical method of statistical linearization when applied to a non-linear oscillator excited by stationary wide-band random excitation, can be considered as a procedure in which the unknown parameters in a Gaussian distribution are evaluated by means of moment identities derived from the dynamic equation of the oscillator. A systematic extension of this procedure is the method of non-Gaussian closure in which an increasing number of moment identities are used to evaluate additional parameters in a family of non-Gaussian response distributions. The method is described and illustrated by means of examples. Attention is given to the choice of representations of non-Gaussian distributions and to techniques for generating independent moment identities directly from the differential equation of the non-linear oscillator. Some shortcomings of the method are pointed out.  相似文献   

19.
研究了悬索在受到外激励作用和考虑1∶3内共振情况下的两模态非线性响应。对于一定范围内的悬索弹性-几何参数而言,悬索第三阶面内对称模态的固有频率接近于第一阶面内对称模态的固有频率的3倍,从而导致1∶3内共振的存在。首先利用Galerkin方法把悬索的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动,可得到两组不同主共振情况下的平均方程。  相似文献   

20.
基于增量热场理论,利用Hamilton变分原理,通过引入与张拉力和垂度相关的无量纲参数,建立了考虑温度变化影响下斜拉索非线性动力学模型,并推导其面内/外非线性运动微分方程。考虑斜拉索受端部激励,利用Galerkin法得到离散后的无穷维常微分方程组。面内和面外运动各取前两阶模态,向前和向后扫频,利用龙格-库塔法数值积分求解常微分方程组,得到共振区域的幅频响应曲线。算例分析表明,温度变化和斜拉索固有频率呈反比例关系;温度变化会导致斜拉索共振特性发生定性和定量的改变,如共振区间发生漂移、跳跃点位置发生移动、共振响应幅值发生改变;端部位移激励下,温度变化有可能导致斜拉索更多模态受到激发,从而影响各阶模态的能量以及模态间的能量传递。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号