共查询到20条相似文献,搜索用时 0 毫秒
1.
The 1, 2-rearrangements of alkylidenecarbenes XYC=C: (X, Y=Cl, H, Me and F) have been studied by using RHF/STO-3G gradient method. For these systems at the STO-3G level, the shift reactivities are in the order of Cl>H>Me>F; the fixed groups with lower shift reactivities enhance the reactivities of the shift groups; the shift rule is that the group with a smaller angle formed by its center with C=C bond migrates prior to the others. 相似文献
2.
Yadav RA Kumar M Singh R Singh P Jaiswal S Srivastav G Prasad RL 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,71(4):1565-1570
Using Gaussian 03 Revision C.02 version of the quantum chemical program ab initio and DFT computations have been carried out at the rhf/6-31+g*, b3lyp/6-31+g*, b3lyp/6-31++g** and b3lyp/6-311++g** levels to compute optimized geometries, harmonic vibrational frequencies along with intensities in IR and Raman spectra and atomic charges for the acetic (ethanoic) acid and its 1,1,1-tri-halo (fluoro, chloro and bromo) derivatives. The optimized molecular structures for all the four molecules are found to possess Cs point group symmetry. The symmetric stretching mode is found to have lowest magnitude of the three CX3 stretching modes for all the four molecules, whereas the symmetric deformation mode is found to have the lowest magnitude for EA and TFEA and the highest magnitude for TCEA and TBEA. The parallel rocking mode of the CX3 group is found to have lower magnitude than the perpendicular rocking mode for EA and TFEA where reverse is found for TCEA and TBEA. The modes of the COOH group are substituent sensitive except the OH stretching mode. Moreover, the maximum effect is found for the TFEA molecule. The CF3 group is found to have the characteristic frequencies as 235-505, 787, 1150-1190 and 1400 cm(-1) which are due to the modes delta s(CF3), nu s(CF3), nu as(CF3) and nu(C-CF3), respectively. 相似文献
3.
In this paper, the results of a study of the interaction of methane, fluoroform, chloroform, and bromoform with benzene and hexafluorobenzene are presented. The benzene complexes were studied at the MP2/6-31G(d) and MP2/6-311++G(2d,p) levels, and the hexafluorobenzene complexes were only studied at the MP2/6-31G(d) level. The optimized geometries, stabilization energies, potential energy surfaces, harmonic frequencies, and vibrational intensities are reported. A net attraction is predicted for all four benzene complexes, whereas for the CHX3.C6F6 complexes, it was found that MP2/6-31G(d) predicts a net attraction for the CH4, CHCl3, and CHBr3 complexes and does not predict a stable complex for CHF3.C6F6. The three complexes with net attractions all have blue-shifts of the CHX3 CH stretching wavenumber and a slight contraction (0.001-0.003 A) of the CH bond in CHX3. The MP2/6-31G(d) level predicts that the intensity of the CHX3 CH stretch will vary widely. For CH4.C6H6 and CHF3.C6H6, it is predicted that the intensity will be smaller for the complexes than the free molecules, whereas for the other complexes, anywhere from a 30% increase to an increase of 87 times is predicted. The atoms in molecules analysis showed that only three of the eight criteria for normal hydrogen bonding are satisfied for all eight complexes studied. Criterion 3 (value of the Laplacian at the bond critical point) is not satisfied for any of the eight complexes. 相似文献
4.
在MP2/6-311++G**水平上优化乙烯酮自由基与LiX(X=F,Cl,Br)形成锂键复合物.当卤素的电负性很强(如F元素),使得Li原子处于缺电子状态,此时,电子给体会把电子偏移向锂,形成共价性较强的锂键.而当卤素的电负性减弱时,锂键中主要成分逐渐变为离子键,并且此时锂键性质还要受电子给体影响.另外,由于HCCO为缺电子结构,电负性较弱且体积较大的卤素中的孤对电子会与HCCO之间通过静电相互作用,使得HCCO…Li—X键夹角变小,接近120°.锂键性质对HCCO…LiX(X=F,Cl,Br)复合物中Li—X的伸缩振动频率有直接影响.当锂键表现为共价性时,该频率红移,而当锂键表现为离子性时,该频率蓝移.但是,由于Cl的电负性与O的接近,C的电负性与Br接近所以,在O…Li…Cl和C…Li…Br中容易形成共振结构,导致远大于在其他复合物中的红移. 相似文献
5.
The ionic dissociation of salts was examined with a theoretical study of KX (X=F,Cl,Br,I) hydrated by up to six water molecules KX(H2O)n (n=1-6). Calculations were done using the density functional theory and second order M?ller-Plesset (MP2) perturbational theory. To provide more conclusive results, single point energy calculations using the coupled cluster theory with single, double, and perturbative triple excitations were performed on the MP2 optimized geometries. The dissociation feature of the salts was examined in terms of K-X bond lengths and K-X stretch frequencies. In general, the successive incorporation of water molecules to the cluster lengthens the K-X distance, and consequently the corresponding frequency decreases. Near 0 K, the KX salt ion pairs can be partly separated by more than five water molecules. The pentahydrated KX salt is partly dissociated, though these partly dissociated structures are almost isoenergetic to the undissociated ones for KFKCl. For the hexahydrated complexes, KF is undissociated, KClKBr is partly dissociated, and KI is dissociated (though this dissociated structure is nearly isoenergetic to a partly dissociated one). On the other hand, at room temperature, the penta- and hexahydrated undissociated structures which have less hydrogen bonds are likely to be more stable than the partly dissociated ones because of the entropy effect. Therefore, the dissociation at room temperature could take place for higher clusters than the hexahydrated ones. 相似文献
6.
Maroulis G 《Journal of computational chemistry》2003,24(4):443-452
We report electric multipole moments and (hyper)polarizabilities for the haloethynes HCCX, X = F, Cl, Br, and I. The molecular properties have been obtained from finite-field self-consistent field, M?ller-Plesset perturbation theory and coupled cluster calculations with large, carefully optimized basis sets of gaussian-type functions. The mean dipole (hyper)polarizability and the mean quadrupole polarizability near the Hartree-Fock limit are alpha/e(2)a(0) (2)E(h) (-1) = 23.74 (HCCF), 37.26 (HCCCl), 43.97 (HCCBr), 56.44 (HCCI), beta/e(3)a(0) (3)E(h) (-2) = -73.9 (HCCF), -67.0 (HCCCl), -39.5 (HCCBr), 42.7 (HCCI), gamma/e(4)a(0) (4)E(h) (-3) = 4,914 (HCCF), 6,554 (HCCCl), 9,328 (HCCBr), 14,949 (HCCI), and C/e(2)a(0) (4)E(h) (-1) = 160.3 (HCCF), 317.1 (HCCCl), 471.2 (HCCBr), 671.2 (HCCI). Electron correlation has a small effect on the dipole polarizability but affects strongly the hyperpolarizability. Agreement with the available experimental data is more or less fair for HCCF, HCCCl, and HCCBr but less satisfactory for HCCI. 相似文献
7.
8.
The harmonic vibrational force fields and the IR spectrum of XSO2NCO (X= F, C1) molecules have been studied usingab initio HF/SCF method with the 6-31G’ basis set. Theab initio harmonic force fields are scaled empirically using the scaled quantum mechanical (SQM) method of Pulay. A set of scale factors
are optimized by the least-squares fitting to the experimental frequencies of FSO2NCO and then are transferred to CISO2NCO to give ana priori prediction of its fundamental frequencies. The average deviations between the theoretical frequencies and the experimental
values for FSO2NCO and C1SO2NCO are 3 and 5 cm-1, respectively. The assignments of the fundamentals for these two molecules are also made atcording to the potential energy
distributions and theab initio IR intensities
Project supported by the National Natural Science Foundation of China (Grant No. 29673029) 相似文献
9.
ThefluorosulfonylisocyanateandchlorosulfonylisocyanatemoleculesarethemostreactivemoleculesforthetransferenceoftheNCOgroupandareveryimportantinsyntheticchemistry.Duetotheirversatilityinchemicalreactions,theyhavealsobecomethesubjectofmanystructuralstudi… 相似文献
10.
Elliott BM Koyle E Boldyrev AI Wang XB Wang LS 《The journal of physical chemistry. A》2005,109(50):11560-11567
Gas-phase alkaline earth halide anions, MgX3(-) and CaX3(-) (X = Cl, Br), were produced using electrospray and investigated using photoelectron spectroscopy at 157 nm. Extremely high electron binding energies were observed for all species and their first vertical detachment energies were measured as 6.60 +/- 0.04 eV for MgCl3(-), 6.00 +/- 0.04 eV for MgBr3(-), 6.62 +/- 0.04 eV for CaCl3(-), and 6.10 +/- 0.04 eV for CaBr3(-). The high electron binding energies indicate these are very stable anions and they belong to a class of anions, called superhalogens. Theoretical calculations at several levels of theory were carried out on these species, as well as the analogous BeX3(-). Vertical detachment energy spectra were predicted to compare with the experimental observations, and good agreement was obtained for all species. The first adiabatic detachment energies were found to be substantially lower (by about 1 eV) than the corresponding vertical detachment energies for all the MX3(-) species, indicating extremely large geometry changes between MX3(-) and MX3. We found that all the MX3(-) anions possess D3h ((1)A1') structures and are extremely stable against dissociation into MX2 and X-. The corresponding neutral species MX3, however, were found to be only weakly bound with respect to dissociation toward MX2 + X. The global minimum structures of all the MX3 neutrals were found to be C2v ((2)B2), which can be described as (X2(-))(MX+) charge-transfer complexes, whereas the MX2...X (C2v, (2)B1) van der Waals complexes were shown to be low-lying isomers. 相似文献
11.
CH_3NO(1)、CH_2FNO(2)、CHF_2NO(3)、CH_2ClNO(4)、CHCl_2NO(5)、CHCIFNO(6)、CF_3NO(7)和CCl_3NO(8)是一类重要的光化学分子,它们稳定性差、寿命短,实验研究其结构及稳定性较困难,仅CH_3NO、CF_3NO和CCl_3NO分子有理论研究,其余均未见报道,本文用ab initio方法在STO-3G水平上研究了上述分子结构稳定性,还用STO/ 相似文献
12.
We have studied the dissociation phenomena of sodium halides by water molecules. The structures, binding energies, electronic properties, and IR spectroscopic features have been investigated by using the density-functional theory, second-order Moller-Plesset perturbation theory, and coupled clusters theory with single, double, and perturbative triplet excitations. In the case that the sodium halides are hydrated by three water molecules, the most stable structures show the partial (or half) dissociation feature. The dissociated structures are first found for NaX(H2O)(n=5) for X=BrI, though these structures are slightly higher in energy than the global minimum-energy structure. In the case of hexahydrated sodium halides the global minimum-energy structures (which are different from the structures reported in any previous work) are found to be dissociated (X=F/I) or partially/half dissociated (X=Cl/Br), while other nearly isoenergetic structures are undissociated, and the dissociated cubical structures are higher in energy than the corresponding global minimum-energy structure. 相似文献
13.
The authors have calculated the low-temperature phase diagrams for the ternary alkali halides KBr-NaBr, KX-RbX, and LiX-RbX (X=Cl,Br) systems on the ab initio level without any recourse to experimental information. Via global exploration of the enthalpy landscapes for many different compositions in these systems, candidates for both ordered stoichiometric modifications and crystalline solid solution phases have been identified. Next, their free enthalpies were computed on ab initio level, and the respective low-temperature phase diagram has been derived. They find miscibility gaps in the systems KBr-NaBr and KX-RbX (X=Cl,Br), while in LiX-RbX (X=Cl,Br) only crystalline ordered phases should be present, in agreement with available experimental data. Furthermore, they predict several new thermodynamically stable and metastable phases in these systems. 相似文献
14.
Halogen-hydride interactions between Z-X (Z = CN, NC and X = F, Cl, Br) as halogen donor and H-Mg-Y (Y = H, F, Cl, Br, CH(3)) as electron donor have been investigated through the use of Becke three-parameter hybrid exchange with Lee-Yang-Parr correlation (B3LYP), second-order M?ller-Plesset perturbation theory (MP2), and coupled-cluster single and double excitation (with triple excitations) [CCSD(T)] approaches. Geometry changes during the halogen-hydride interaction are accompanied by a mutual polarization of both partners with some charge transfer occurring from the electron donor subunit. Interaction energies computed at MP2 level vary from -1.23 to -2.99 kJ/mol for Z-F···H-Mg-Y complexes, indicating that the fluorine interactions are relatively very weak but not negligible. Instead, for chlorine- and bromine-containing complexes the interaction energies span from -5.78 to a maximum of -26.42 kJ/mol, which intimate that the interactions are comparable to conventional hydrogen bonding. Moreover, the calculated interaction energy was found to increase in magnitude with increasing positive electrostatic potential on the extension of Z-X bond. Analysis of geometric, vibrational frequency shift and the interaction energies indicates that, depending on the halogen, CN-X···H interactions are about 1.3-2.0 times stronger than NC-X···H interactions in which the halogen bonds to carbon. We also identified a clear dependence of the halogen-hydride bond strength on the electron-donating or -withdrawing effect of the substituent in the H-Mg-Y subunits. Furthermore, the electronic and structural properties of the resulting complexes have been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Finally, several correlative relationships between interaction energies and various properties such as binding distance, frequency shift, molecular electrostatic potential, and intermolecular density at bond critical point have been checked for all studied systems. 相似文献
15.
16.
Using a composite coupled cluster method employing sequences of correlation consistent basis sets for complete basis set (CBS) extrapolations and with explicit treatment of core-valence correlation and scalar and spin-orbit relativistic effects, the 0 K enthalpies of a wide range of cadmium-halide reactions, namely, Cd + (HCl, HBr, ClO, BrO, Cl2, BrCl, Br2) have been determined to an estimated accuracy of +/-1 kcal/mol. In addition, accurate equilibrium geometries, harmonic frequencies, and dissociation energies have been calculated at the same level of theory for all the diatomic (e.g., CdH, CdO, CdCl, CdBr) and triatomic (CdHCl, CdHBr, CdClO, CdBrO, CdCl2, CdBrCl, CdBr2) species involved in these reactions, some for the very first time. Like their mercury analogues, all of the abstraction reactions are predicted to be endothermic, while the insertion reactions are strongly exothermic with the formation of stable linear, Cd-centric complexes. With the exception of CdH and the reactions involving this species, the present results for the remaining Cd-containing systems are believed to be the most accurate to date. 相似文献
17.
The ground and lower-lying excited electronic states of FeX2 and NiX2 (X=F, Cl, Br, I) molecules are systematically investigated by ab initio method at the complete active space self-consistent field (CASSCF) and multiconfigurational quasi-degenerate second-order perturbation (MCQDPT2) levels of theory. It is concluded that the dynamic electron correlation has to be taken into account in the prediction of the properties for such kind of molecules. The equilibrium bond lengths re(M–X), force constants and harmonic vibrational frequencies are calculated for the ground and lower-lying excited electronic states. The spin-orbit coupling (SOC) effects are analysed. 相似文献
18.
Accurate 0 K enthalpies have been calculated for reactions of mercury with a series of small iodine-containing molecules (I2, IBr, ICl, and IO). The calculations have been carried out with the coupled cluster singles and doubles method with a perturbative correction for connected triple excitations [CCSD(T)] using sequences of correlation consistent basis sets and accurate relativistic pseudopotentials. Corrections have been included to account for core-valence correlation, spin-orbit coupling, scalar relativity, and the Lamb shift. In a few cases coupled cluster calculations with iterative triple (CCSDT) and quadruple (CCSDTQ) excitations have been carried out to estimate the effects of higher order electron correlation. The pseudopotential calculations have also been compared to all electron calculations using second- and third-order Douglas-Kroll-Hess Hamiltonians. In addition to the reaction enthalpies, heats of formation, bond lengths, and harmonic vibrational frequencies have been calculated for the stable triatomic products HgI2, HgIBr, HgICl, and HgIO. Accurate dissociation energies, equilibrium bond lengths, and harmonic vibrational frequencies have also been calculated for each of the diatomic molecules involved in this study (HgI, HgBr, HgCl, HgO, I2, IBr, ICl, and IO). The reported enthalpies are expected to have accuracies of 1 kcal/mol or better. 相似文献
19.
A. Dhouib K. Essalah B. Tangour M. Abderraba 《International journal of quantum chemistry》2002,87(4):220-224
The aim of this study is the determination of the g tensor of the tetrathiafulvalene (TTF) molecule involved in chlorine and bromine radical–ion salts. This work is based on ab initio calculations using several basis sets which enabled us to compare theoretical and experimental measurement data. The results show clearly the impact of the structural distortions on the g gyroscopic matrix elements and proves the important fact that even a small variation of the crystallographic parameters has major consequences on the physical–chemical properties. © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2002 相似文献
20.
The vertical electron detachment energies (VDEs) of 30 MX 4 (-) (M = B, Al; X = F, Cl, Br) anions were calculated at the OVGF level with the 6-311+G(3df) basis sets. The largest vertical electron binding energy was found for the AlF 4 (-) system (9.789 eV). The strong VDE dependence on the symmetry of the species, ligand type, ligand-central atom distance, and bonding/nonbonding/antibonding character of the highest occupied molecular orbital was observed and discussed. 相似文献