首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laser induced fluorescence excitation and single vibronic excitation dispersed fluorescence spectra have been studied for supersonic jet cooled 1-methyl-2(1h)-pyridone. The methyl torsional bands and some low frequency vibrational transitions were assigned for both ground and excited states. The torsional parameters V(3)=244 cm(-1) and V(6)=15 cm(-1) for the ground state and V(3)=164 cm(-1) and V(6)=40 cm(-1) for the excited state were obtained. To get the insight into the methyl torsional barrier, ab initio calculations were performed and compared with the experimental results. Origin of potential barrier was traced by partitioning the barrier energy into changes in bond-antibond interaction, structural, and steric energies accompanying methyl rotation using natural bond orbital analysis. The role of local interactions in ascertaining the barrier potential reveals that its nature cannot be understood without considering the molecular flexing. The hyperconjugation between CHsigma(*) and ring pi(*) observed in lowest unoccupied molecular orbital (LUMO) stabilizes the methyl group conformer that undergoes a 60 degrees rotation in the excited state with respect to that of the ground state, and it is the change in LUMO that plays important role in the excited state barrier formation.  相似文献   

2.
Rotationally resolved resonant two-photon ionization spectra of jet-cooled NbMo are reported for the first time. A vibronic spectrum of NbMo was recorded in the 17 300-22 300 cm(-1) spectral region. Although the observed bands could not be grouped into electronic band systems, four excited vibronic levels with Omega=2.5 and two excited levels with Omega=3.5 were identified. The ground state of NbMo has been assigned as (2)Delta(52), deriving from a 1sigma(2)1pi(4)1delta(3)2sigma(2) configuration of the valence electrons. Rotational analysis of six bands provides a ground state rotational constant of B(0) (")=0.087 697(26) cm(-1), corresponding to a bond length of r(0) (")=2.008 09(30) A for (93)Nb(98)Mo. Correction for the effects of the spin-uncoupling operator changes the estimated bond length only slightly to r(0) (")=2.008 02(30) A. The experimentally determined value of r(0) (") is compared to that predicted using previously determined multiple bonding radii of Nb and Mo. A comparison to the known diatomic molecules composed of group V and VI metal atoms is also made.  相似文献   

3.
Vibronically resolved resonant two-photon ionization and dispersed fluorescence spectra of the organometallic radicals CrC(2)H, CrCH(3), and NiCH(3) are reported in the visible and near-infrared wavelength regions. For CrC(2)H, a complicated vibronic spectrum is found in the 11 100-13 300 cm(-1) region, with a prominent vibrational progression having omega(e) (')=426.52+/-0.84 cm(-1), omega(e) (')x(e) (')=0.74+/-0.13 cm(-1). Dispersed fluorescence reveals a v(")=1 level of the ground state with DeltaG(1/2) (")=470+/-20 cm(-1). These vibrational frequencies undoubtedly pertain to the Cr-C(2)H stretching mode. It is suggested that the spectrum corresponds to the A (6)Sigma(+)<--X (6)Sigma(+) band system, with the CrC(2)H molecule being linear in both the ground and the excited state. The related CrCH(3) molecule displays a vibronic spectrum in the 11 500-14 000 cm(-1) region. The upper state of this system displays six sub-bands that are too closely spaced to be vibrational structure, but too widely separated to be K structure. It is suggested that the observed spectrum is a (6)E<--X (6)A(1) band system, analogous to the well-known B (6)Pi<--X (6)Sigma(+) band systems of CrF and CrCl. The ground state Cr-CH(3) vibration is characterized by omega(e) (")=525+/-17 cm(-1) and omega(e) (")x(e) (")=7.9+/-6 cm(-1). The spectrum of NiCH(3) lies in the 16 100-17 400 cm(-1) range and has omega(e) (')=455.3+/-0.1 cm(-1) and omega(e) (')x(e) (')=6.60+/-0.03 cm(-1). Dispersed fluorescence studies provide ground state vibrational constants of omega(e) (")=565.8+/-1.6 cm(-1) and omega(e) (")x(e) (")=1.7+/-3.0 cm(-1). Again, these values correspond to the Ni-CH(3) stretching motion. (c) 2004 American Institute of Physics.  相似文献   

4.
Vinyl alcohols (enols) have been discovered as important intermediates and products in the oxidation and combustion of hydrocarbons, while methyl vinyl ethers are also thought to occur as important combustion intermediates. Vinyl alcohol has been detected in interstellar media, while poly(vinyl alcohol) and poly(methyl vinyl ether) are common polymers. The thermochemical property data on these vinyl alcohols and methyl vinyl ethers is important for understanding their stability, reaction paths, and kinetics in atmospheric and thermal hydrocarbon-oxygen systems. Enthalpies , entropies , and heat capacities (C(p)()(T)) are determined for CH(2)=CHOH, C(*)H=CHOH, CH(2)=C(*)OH, CH(2)=CHOCH(3), C(*)H=CHOCH(3), CH(2)=C(*)OCH(3), and CH(2)=CHOC(*)H(2). Molecular structures, vibrational frequencies, , and C(p)(T) are calculated at the B3LYP/6-31G(d,p) density functional calculation level. Enthalpies are also determined using the composite CBS-Q, CBS-APNO, and G3 methods using isodesmic work reactions to minimize calculation errors. Potential barriers for internal rotors are calculated at the B3LYP/6-31G(d,p) level and used to determine the hindered internal rotational contributions to entropy and heat capacity. The recommended ideal gas phase values calculated in this study are the following (in kcal mol(-1)): -30.0, -28.9 (syn, anti) for CH(2)=CHOH; -25.6, -23.9 for CH(2)=CHOCH(3); 31.3, 33.5 for C(*)H=CHOH; 27.1 for anti-CH(2)=C(*)OH; 35.6, 39.3 for C(*)H=CHOCH(3); 33.5, 32.2 for CH(2)=C(*)OCH(3); 21.3, 22.0 for CH(2)=CHOC(*)H(2). Bond dissociation energies (BDEs) and group additivity contributions are also determined. The BDEs reveal that the O-H, O-CH(3), C-OH, and C-OCH(3) bonds in vinyl alcohol and methyl vinyl ether are similar in energy to those in the aromatic molecules phenol and methyl phenyl ether, being on average around 3 kcal mol(-1) weaker in the vinyl systems. The keto-enol tautomerization enthalpy for the interconversion of vinyl alcohol to acetaldehyde is determined to be -9.7 kcal mol(-1), while the activation energy for this reaction is calculated as 55.9 kcal mol(-1); this is the simplest keto-enol tautomerization and is thought to be important in the reactions of vinyl alcohol. Formation of the formyl methyl radical (vinoxy radical/vinyloxy radical) from both vinyl alcohol and methyl vinyl ether is also shown to be important, and its reactions are discussed briefly.  相似文献   

5.
Rotationally resolved resonant two-photon ionization (R2PI) spectra of ScCo and YCo are reported. The measured spectra reveal that these molecules possess ground electronic states of (1)Sigma(+) symmetry, as previously found in the isoelectronic Cr(2) and CrMo molecules. The ground state rotational constants for ScCo and YCo are B(0)(")=0.201 31(22) cm(-1) and B(0) (")=0.120 96(10) cm(-1), corresponding to ground state bond lengths of r(0) (")=1.812 1(10) A and r(0) (")=1.983 0(8) A, respectively. A single electronic band system, assigned as a (1)Pi<--X (1)Sigma(+) transition, has been identified in both molecules. In ScCo, the (1)Pi state is characterized by T(0)=15,428.8, omega(e)(')=246.7, and omega(e)(')x(e)(')=0.73 cm(-1). In YCo, the (1)Pi state has T(0)=13 951.3, omega(e)(')=231.3, and omega(e)(')x(e) (')=2.27 cm(-1). For YCo, hot bands originating from levels up to v(")=3 are observed, allowing the ground state vibrational constants omega(e)(")=369.8, omega(e)(")x(e)(")=1.47, and Delta G(12)(")=365.7 cm(-1) to be deduced. The bond energy of ScCo has been measured as 2.45 eV from the onset of predissociation in a congested vibronic spectrum. A comparison of the chemical bonding in these molecules to related molecules is presented.  相似文献   

6.
The authors report the first gas-phase spectroscopic investigation of diatomic vanadium molybdenum (VMo). The molecules were produced by laser ablation of a VMo alloy disk and cooled in a helium supersonic expansion. The jet-cooled VMo molecules were studied using resonant two-photon ionization spectroscopy. The ground state has been demonstrated to be of (2)Delta(52) symmetry, deriving from the dsigma(2)dpi(4)ddelta(3)ssigma(2) electronic configuration. Rotational analysis has established the ground state bond length and rotational constant as r(0) (")=1.876 57(23) A and B(0) (")=0.142 861(35) cm(-1), respectively, for (51)V(98)Mo (1sigma error limits). Transitions to states with Omega(')=2.5, Omega(')=3.5, and Omega(')=1.5 have been recorded and rotationally analyzed. A band system originating at 15 091 cm(-1) has been found to exhibit a vibrational progression with omega(e) (')=752.7 cm(-1), omega(e) (')x(e) (')=12.8 cm(-1), and r(0) (')=1.90 A for (51)V(98)Mo. The measured bond lengths (r(0)) of V(2), VNb, Nb(2), Cr(2), CrMo, Mo(2), VCr, NbCr, and VMo have been used to derive multiple bonding radii for these elements of r(V)=0.8919 A, r(Nb)=1.0424 A, r(Cr)=0.8440 A, and r(Mo)=0.9725 A. These values reproduce the bond lengths of all nine diatomics to an accuracy of +/-0.012 A or better.  相似文献   

7.
Excitation of the 7-hydroxyquinoline(NH(3))(3) [7HQ(NH(3))(3)] cluster to the S(1) (1)pi pi(*) state results in an O-H-->NH(3) hydrogen atom transfer (HAT) reaction. In order to investigate the entrance channel, the vibronic S(1)<-->S(0) spectra of the 7HQ.(NH(3))(3) and the d(2)-7DQ.(ND(3))(3) clusters have been studied by resonant two-photon ionization, UV-UV depletion and fluorescence techniques, and by ab initio calculations for the ground and excited states. For both isotopomers, the low-frequency part of the S(1)<--S(0) spectra is dominated by ammonia-wire deformation and stretching vibrations. Excitation of overtones or combinations of these modes above a threshold of 200-250 cm(-1) for 7HQ.(NH(3))(3) accelerates the HAT reaction by an order of magnitude or more. The d(2)-7DQ.(ND(3))(3) cluster exhibits a more gradual threshold from 300 to 650 cm(-1). For both isotopomers, intermolecular vibrational states above the threshold exhibit faster HAT rates than the intramolecular vibrations. The reactivity, isotope effects, and mode selectivity are interpreted in terms of H atom tunneling through a barrier along the O-H-->NH(3) coordinate. The barrier results from a conical intersection of the optically excited (1)pi pi(*) state with an optically dark (1)pi sigma(*) state. Excitation of the ammonia-wire stretching modes decreases both the quinoline-O-H...NH(3) distance and the energetic separation between the (1)pi pi(*) and (1)pi sigma(*) states, thereby increasing the H atom tunneling rate. The intramolecular vibrations change the H bond distance and modulate the (1)pi pi(*)<-->(1)pi sigma(*) interaction to a much smaller extent.  相似文献   

8.
The tunneling-split origin band of the tropolone A (1)B(2)-X (1)A(1) (pi(*)<--pi) absorption system was interrogated under ambient, bulk-gas conditions by exploiting high-resolution degenerate four-wave mixing techniques. The inherent complexity of this spectral region was alleviated by performing polarization-resolved measurements, with judicious selection of transverse characteristics for the incident and detected electromagnetic fields enabling rovibronic transitions to be discriminated according to their attendant changes in rotational angular momentum, DeltaJ. Quantitative simulation of recorded data sets showed the vibrationless level of the electronically excited state to be bifurcated by Delta(0) (A)=19.846(25) cm(-1), representing a factor of 20 increase in proton-transfer efficiency over the corresponding level of the ground electronic state. Spectroscopic parameters extracted for the 0(+) and 0(-) manifolds of A (1)B(2) tropolone yield unexpectedly large values of the inertial defect, DeltaI(0(+) ) (A)=-0.802(86) amu A(2) and DeltaI(0(-) ) (A)=-0.882(89) amu A(2), strongly suggesting that a loss of molecular planarity accompanies the pi(*)<--pi electron promotion. These results, as well as complementary information deduced for interloping hot-band resonances, are discussed in terms of the unique structural and dynamical properties exhibited by tropolone and related proton-transfer species.  相似文献   

9.
The electronic Fukui function is used to give qualitative electronic proof on the existence of back-bonding from the carbon lone pair toward the sigma* P-Y and P-O orbitals in phosphorus stabilized carbanions. NBO analyses are used to investigate the energetic, electronic, and structural impacts of this negative hyperconjugation interaction. The observed energetic stabilization can indeed be attributed to the electronic delocalization of the lone pair toward the antibonding orbitals. This delocalization is furthermore responsible for the shorter P-C bonds, longer P-Y (P-O) bonds, and wider Y-P-Y angles observed for the anionic compounds compared to their neutral counterparts. From the electronic NBO analysis it becomes clear that phosphorus containing functional groups are best described as sigma donor/pi acceptors.  相似文献   

10.
The fast nonradiative decay dynamics of the lowest two excited pipi(*) electronic states (S(2) and S(3)) of hexafluorobenzene have been investigated by using femtosecond time-resolved time-of-flight mass spectrometry. The molecules were excited at wavelengths between 265 nm > or = lambda(pump) > or = 217 nm and probed by four- and three-photon ionization at lambda(probe)=775 nm. The observed temporal profiles exhibit two exponential decay times (tau(1)=0.54-0.1 ps and tau(2)=493-4.67 ps, depending on the excitation wavelength) and a superimposed coherent oscillation with vibrational frequency nu(osc)=97 cm(-1) and damping time tau(D) that is two to three times longer than the respective tau(1). The first decay component (tau(1)) is assigned to rapid radiationless transfer from the excited optically bright pipi(*) electronic state (S(2) or S(3), respectively) through a conical intersection (CI) to the lower-lying optically dark pisigma(*) state (S(1)) of the molecule; the second component (tau(2)) is attributed to the subsequent slower relaxation from the S(1) state back to the electronic ground state (S(0)). tau(2) dramatically decreases with increasing vibronic excitation energy up to the CI connecting the pisigma(*) with the S(0) state. The coherent oscillation is identified as nuclear motion along the out-of-plane vibration nu(16a) (notation as for benzene), which has e(2u) symmetry and acts as coupling mode between the pipi(*) and pisigma(*) states.  相似文献   

11.
The laser excitation spectrum of the 327 nm band system of CoCl2, formed in a free-jet expansion, has been recorded at a rotational temperature of approximately 10 K. The spectrum is congested and suffers extensive perturbations. A progression in the excited state symmetric stretching vibration has been identified. The decrease in the symmetric stretching vibrational wave number on excitation is considerable [nu1 '=195.7(12), nu1 (")=358.1(17) cm(-1)]. Despite widespread perturbations in the rotational structure of these vibronic bands, they can be confidently assigned to a parallel Omega=72-72 transition, consistent with an inverted 4Deltag ground electronic state. The rotational constant for Co35Cl2 in the ground state is determined to be 0.056 65(11) cm(-1), which corresponds to a value for the zero-point averaged Co-Cl bond length r0 of 2.062 8(40) A. The perturbations are found to be strongly isotopomer dependent.  相似文献   

12.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

13.
The zero-field D parameter of the localized E, Z, and disubstituted vinyl cyclopentane-1,3-diyl triplet diradicals V was determined at 77 K in a 2-methyltetrahydrofuran (2-MTHF) matrix. Good linear correlations were obtained with the semiempirically (PM3; r(2) = 0. 991, n = 19) and DFT (B3LYP; r(2) = 0.998, n = 7) calculated spin densities of the triplet diradicals. The D values for the disubstituted triplet diradicals V are generally larger than the corresponding monosubstituted ones and, thus, the former are less well-delocalized and thereby more poorly stabilized. For the E- and Z-diastereomeric pairs V, only marginal changes in the theoretical assessed spin densities as well as in the D values have been found. Steric effects operate and distort the conformation of the vinyl substituent in the triplet diradical V. This is adequately reproduced by theoretical calculations. For the diphenyl-substituted triplet diradical Vl, for example, they show a more or less planar alignment of the E-phenyl group and the allylic pi system (torsion angle 12 degrees ) and thus optimal delocalization of spin, whereas the Z-phenyl group is twisted about 78 degrees out of plane and therefore is not involved in the delocalization and stabilization of spin. This results in a slightly higher D value (0.0368 cm(-)(1)), and the spin is delocalized less than in the monosubstituted E-Vm one (0.0357 cm(-)(1)).  相似文献   

14.
The bent d(0) titanium metallocene (Cp)(2)Ti(NCS)(2) exhibits an intense phosphorescence from a ligand-to-metal charge transfer triplet excited state at 77 K in an organic glass substrate and a poly(methyl methacrylate) plastic substrate. Quantum chemical calculations and spectroscopic studies show that the orbital parentage of this triplet state arises from the promotion of an electron from an essentially nonbonding symmetry adapted pi molecular orbital located on the NCS(-) ligands to a d(z)2-(y)2 orbital located on the Ti metal. Standard infrared spectroscopy of (Cp)(2)Ti(NCS)(2) in its ground electronic state at 77 K reveals a pair of closely spaced absorptions at (2072 cm(-1), 2038 cm(-1))(glass) and (2055 cm(-1), 2015 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretching modes of the two coordinated NCS(-) ligands. Low-temperature (77 K) time-resolved infrared spectroscopy that accesses the phosphorescing triplet excited state on the ns time scale shows an IR bleach that is coincident with the two ground state CN stretching bands and an associated grow-in of a pair of new IR bands at slightly lower energies (2059 cm(-1), 2013 cm(-1))(glass) and (2049 cm(-1), 1996 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretches in the emitting triplet state. These transient IR bands decay with virtually identical lifetimes to those observed for the phosphorescence decays when measured under identical experimental conditions. Singular value decomposition analysis of the time-resolved infrared data shows that the observed transient IR features arise from the same electronic manifold as measured through luminescence studies. The close similarity between the ground state and excited-state CN stretching bands in (Cp)(2)Ti(NCS)(2) indicates that symmetry breaking does not occur in forming the charge-transfer triplet excited-state manifold; i.e., electron density is withdrawn from a delocalized pi MO spread across both NCS(-) ligands. Calculations at several levels of theory reveal a delocalized ligand-to-metal charge transfer excited triplet manifold. These calculations closely reproduce the relative intensity ratios and frequencies of the symmetric and antisymmetric transient infrared vibrations in the CN region. This study is the first time-resolved infrared investigation of a ligand-to-metal charge-transfer excited state and the first to be performed at cryogenic temperatures in thin-film organic glass and plastic substrates.  相似文献   

15.
The intrinsic strength of pi interactions in conjugated and hyperconjugated molecules has been calculated using density functional theory by energy decomposition analysis (EDA) of the interaction energy between the conjugating fragments. The results of the EDA of the trans-polyenes H2C=CH-(HC=CH)n-CH=CH2 (n = 1-3) show that the strength of pi conjugation for each C=C moiety is higher than in trans-1,3-butadiene. The absolute values for the conjugation between Si=Si pi bonds are around two-thirds of the conjugation between C=C bonds but the relative contributions of DeltaE pi to DeltaE orb in the all-silicon systems are higher than in the carbon compounds. The pi conjugation between C=C and C=O or C=NH bonds in H2C=CH--C(H)=O and H2C=CH-C(H)=NH is comparable to the strength of the conjugation between C=C bonds. The pi conjugation in H2C=CH-C(R)=O decreases when R = Me, OH, and NH2 while it increases when R = halogen. The hyperconjugation in ethane is around a quarter as strong as the pi conjugation in ethyne. Very strong hyperconjugation is found in the central C-C bonds in cubylcubane and tetrahedranyltetrahedrane. The hyperconjugation in substituted ethanes X3C-CY3 (X,Y = Me, SiH3, F, Cl) is stronger than in the parent compound particularly when X,Y = SiH3 and Cl. The hyperconjugation in donor-acceptor-substituted ethanes may be very strong; the largest DeltaE pi value was calculated for (SiH3)3C-CCl3 in which the hyperconjugation is stronger than the conjugation in ethene. The breakdown of the hyperconjugation in X3C-CY3 shows that donation of the donor-substituted moiety to the acceptor group is as expected the most important contribution but the reverse interaction is not negligible. The relative strengths of the pi interactions between two C=C double bonds, one C=C double bond and CH3 or CMe3 substituents, and between two CH3 or CMe3 groups, which are separated by one C-C single bond, are in a ratio of 4:2:1. Very strong hyperconjugation is found in HC[triple bond]C-C(SiH3)3 and HC[triple bond]C-CCl3. The extra stabilization of alkenes and alkynes with central multiple bonds over their terminal isomers coming from hyperconjugation is bigger than the total energy difference between the isomeric species. The hyperconjugation in Me-C(R)=O is half as strong as the conjugation in H2C=CH-C(R)=O and shows the same trend for different substituents R. Bond energies and lengths should not be used as indicators of the strength of hyperconjugation because the effect of sigma interactions and electrostatic forces may compensate for the hyperconjugative effect.  相似文献   

16.
Butadiene monoxide (BMO) undergoes the S(0)-->S(1) transition, involving the excitation of both pi and n electrons to pi(*) orbital, at 193 nm. After relaxing to the ground electronic state via internal conversion, BMO molecules undergo intramolecular rearrangement and subsequently dissociate to form unexpected OH radicals, which were detected state selectively by laser-induced fluorescence technique, and the energy state distribution was measured. OH is produced vibrationally cold, OH(nu(")=0,J(")), with the rotational population characterized by a rotational temperature of 456+/-70 K. The major portion (approximately 60%) of the available energy is partitioned into internal degrees of the photofragments, namely, vibration and rotation. A considerable portion (25%-35%) also goes to the relative translation of the products. The Lambda doublet and spin-orbit ratios of OH were measured to be nearly unity, implying statistical distribution of these states and, hence, no preference for any of the Lambda doublet (Lambda+ and Lambda-) and spin-orbit (Pi(3/2) and Pi(1/2)) states. Formation time of the nascent OH radical was measured to be <100 ns. Different products, such as crotonaldehyde and methyl vinyl ketone, were detected by gas chromatography as stable products of photodissociation. A reaction mechanism for the formation of all these photoproducts, transient and stable, is proposed. The multiple pathways by which these products can be formed have been theoretically optimized, and energies have been calculated. Absorption cross section of BMO at 193 nm was measured, and quantum yield of OH generation channel was also determined.  相似文献   

17.
A new band system of C(2), d (3)Pi(g)<--c (3)Sigma(u) (+) is observed by laser induced fluorescence spectroscopy, constituting the first direct detection of the c (3)Sigma(u) (+) state of C(2). Observations were made by laser excitation of c (3)Sigma(u) (+)(v(")=0) C(2), produced in an acetylene discharge, to the d (3)Pi(g)(v(')=3) level, followed by detection of Swan band fluorescence. Rotational analysis of this band yielded rotational constants for the c (3)Sigma(u) (+)(v(")=0) state: B(0)=1.9218(2) cm(-1), lambda(0)=-0.335(4) cm(-1) and gamma(0)=0.011(2) cm(-1). The vibrational band origin was determined to be nu(3-0)=15861.28 cm(-1).  相似文献   

18.
We have measured the infrared (IR) vibrational spectrum for cis-dichloroethene (cis-ClCH[Double Bond]CHCl) in excited Rydberg states with the effective principal quantum numbers n(*)=9, 13, 17, 21, 28, and 55 using the vacuum ultraviolet-IR-photoinduced Rydberg ionization (VUV-IR-PIRI) scheme. Although the IR frequencies observed for the vibrational bands nu(11) (*) (asymmetric C-H stretch) and nu(12) (*) (symmetric C-H stretch) are essentially unchanged for different n(*) states, suggesting that the IR absorption predominantly involves the ion core and that the Rydberg electron behaves as a spectator; the intensity ratio for the nu(11) (*) and nu(12) (*) bands [R(nu(11) (*)nu(12) (*))] is found to decrease smoothly as n(*) is increased. This trend is consistent with the results of a model ab initio quantum calculation of R(nu(11) (*)nu(12) (*)) for excited cis-ClCH[Double Bond]CHCl in n(*)=3-18 states and the MP26-311++G(2df,p) calculations of R(nu(11)nu(12)) and R(nu(11) (+)nu(12) (+)), where R(nu(11)nu(12))[R(nu(11) (+)nu(12) (+))] represents the intensity ratio of the nu(11)(nu(11) (+)) asymmetric C-H stretching to the nu(12)(nu(12) (+)) symmetric C-H stretching vibrational bands for cis-ClCH[Double Bond]CHCl (cis-ClCH[Double Bond]CHCl(+)). We have also measured the IR-VUV-photoion (IR-VUV-PI) and IR-VUV-pulsed field ionization-photoelectron depletion (IR-VUV-PFI-PED) spectra for cis-ClCH[Double Bond]CHCl. These spectra are consistent with ab initio calculations, indicating that the IR absorption cross section for the nu(12) band is negligibly small compared to that for the nu(11) band. While the VUV-IR-PIRI measurements have allowed the determination of nu(11) (+)=3067+/-2 cm(-1), nu(12) (+)=3090+/-2 cm(-1), and R(nu(11) (+)nu(12) (+)) approximately 1.3 for cis-ClCH=CHCl(+), the IR-VUV-PI and IR-VUV-PFI-PED measurements have provided the value nu(11)=3088.5+/-0.2 cm(-1) for cis-ClCH=CHCl.  相似文献   

19.
The laser induced fluorescence excitation and dispersed fluorescence spectra of three nitrogen heterocyclic molecules 1-methyl-2(1H)pyridone (1MPY), 1-methyl-2(1H)pyridinimine (1MPI), and 3-methyl-2(1H)pyridone (3MPY) have been studied under supersonic jet cooled condition. The methyl torsional and some low frequency vibrational transitions in the fluorescence excitation spectrum were assigned for 1MPY. These new assignments modify the potential parameters to the methyl torsion reported earlier. Some striking similarities exist between the torsional and vibrational transitions in the fluorescence excitation spectra of 1MPY and 1MPI. Apart from pure torsional transitions, a progression of vibration-torsion combination bands was observed for both these molecules. The excitation spectrum of 3MPY resembles the spectrum of its parent molecule, 2-pyridone. The barrier height of the methyl torsion in the excited state of 3MPY is highest amongst all these molecules, whereas the barrier in 1MPI is higher than that of 1MPY. To get an insight into the methyl torsional barrier for these molecules, results of the ab initio calculations were compared with the experimental results. It was found that the conformation of the methyl group undergoes a 60 degrees rotation in the excited state in all these molecules with respect to their ground state conformation. This phase shift of the excited state potential is attributed to the pi*-sigma* hyperconjugation between the out-of-plane hydrogen of the methyl group and the molecular frame. It has been inferred that the change in lowest unoccupied molecular orbital energy plays the dominant role in the excited state barrier formation.  相似文献   

20.
Multiconfigurational second order perturbation theory, with extended atomic basis sets and inclusion of scalar relativistic effects, was employed to investigate the low-lying (1)Sigma(+) electronic states of RhB. The [20.0] (1)Sigma(+) state is represented by a single configuration, mid R:[ellipsis (horizontal)]10sigma(2)11sigma(1)5pi(4)2delta(4)12sigma(1), derived from a single excitation (11sigma-->12sigma) from the ground state, which defines its electronic nature. A new excited state, coined as [9.0] (1)Delta (R(0)=1.786A, DeltaG(12)=792 cm(-1)), located 9221 cm(-1) above the X(1)Sigma(+) state, and described by the |...10sigma(2)11sigma(2)5pi(4)2delta(3)12sigma(1)> electronic configuration, was also identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号