首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the formation of charged patterns on the surface of cylindrical micelles from co-assembled cationic and anionic amphiphiles. The competition between the net incompatibility chi (which arises from the different chemical nature of oppositely charged molecules) and electrostatic interactions (which prevent macroscopic segregation) results in the formation of surface domains. We employ Monte Carlo simulations to study the domains at thermal equilibrium. Our results extend previous work by studying the effect of the Bjerrum length l(B) at different values of the cylinder's radius R and chi and analyze how it affects the transition between helical, ring, and isotropic patterns. A critical surface in the space (l(B), R, chi) separating these three phases is found, and we show how it corresponds to a first-order phase transition. This confirms that the Bjerrum length l(B) is a significant parameter in the control of the helical-ring transition; the ring pattern is strongly associated with short-range forces, whereas the helical pattern develops from dominant long-range electrostatic interactions.  相似文献   

2.
Micelles, vesicles, and films composed of two species of incompatible heterogeneous molecules exhibit full internal segregation of the component species. This macroscopic segregation can be inhibited by oppositely charging the two different molecular species. The degree of compatibility achieved by the charges leads to either fully homogenous mixtures or to local segregation and the possible formation of regular patterns. We investigate the induction of periodic surface patterns by the presence of opposite charges in flat films and cylindrical micelles. In the strong segregation limit the incompatibility between species can be described by a line tension parameter gamma. The size of the patterns formed is of the order of a characteristic size L approximately (gamma/sigma(2))(1/2), where sigma is the surface charge density. The pattern symmetry on flat surfaces is function only of the fraction of area covered by the components, f: lamellar for 0.34相似文献   

3.
Polyamidoamine dendrimers, being protonated under physiological conditions, represent a promising class of nonviral, nanosized vectors for drug and gene delivery. We performed extensive molecular dynamics simulations of a generic model dendrimer in a salt-free solution with dendrimer's terminal beads positively charged. Solvent molecules as well as counterions were explicitly included as interacting beads. We find that the size of the charged dendrimer depends nonmonotonically on the strength of electrostatic interactions demonstrating a maximum when the Bjerrum length equals the diameter of a bead. Many other structural and dynamic characteristics of charged dendrimers are also found to follow this pattern. We address such a behavior to the interplay between repulsive interactions of the charged terminal beads and their attractive interactions with oppositely charged counterions. The former favors swelling at small Bjerrum lengths and the latter promotes counterion condensation. Thus, counterions can have a dramatic effect on the structure and dynamics of charged dendrimers and, under certain conditions, cannot be treated implicitly.  相似文献   

4.
The liquid-gas transition of an electroneutral mixture of oppositely charged colloids, studied by Monte Carlo simulations, is found in the low-temperature-low-density region. The critical temperature shows a nonmonotonous behavior as a function of the interaction range, kappa(-1), with a maximum at kappasigma approximately 10, implying an island of coexistence in the kappa-rho plane. The system is arranged in such a way that each particle is surrounded by shells of particles with alternating charge. In contrast with the electrolyte primitive model, both neutral and charged clusters are obtained in the vapor phase.  相似文献   

5.
We study the interaction between two like charged surfaces embedded in a solution of oppositely charged multivalent rod-like counterions.The counterions consist of two rigidly bonded point charges,each of valency Z.The strength of the electrostatic coupling increases with increasing surface charge density or valency of the charges.The system is analyzed by employing a self-consistent field theory,which treats the short and long range interactions of the counterions within different approximations.We find that in the weak coupling limit,the interactions are only repulsive.In the intermediate coupling regime,the multivalent rod-like counterions can mediate attractive interactions between the surfaces. For sufficiently long rods,bridging contributes to the attractive interaction.In the strong coupling limit,the charge correlations can contribute to the attractive interactions at short separations between the charged surfaces.Two minima can then appear in the force curve between surfaces.  相似文献   

6.
The kinetics of mesoscopic pattern formation is studied for a reversible A+B?0 reaction between mobile oppositely charged molecules at the interface. Using formalism of the joint correlation functions, non-equilibrium charge screening and reverse Monte Carlo methods, it is shown that labyrinth-like percolation structure induced by (even moderate-rate) reaction is principally non-steady-state one and is associated with permanently growing segregation of dissimilar reactants and aggregation of similar reactants into mesoscopic size domains. A role of short-range and long-range reactant interactions in pattern formation is discussed.  相似文献   

7.
Phase diagrams of binary mixtures of oppositely charged colloids are calculated theoretically. The proposed mean-field-like formalism interpolates between the limits of a hard-sphere system at high temperatures and the colloidal crystals which minimize Madelung-like energy sums at low temperatures. Comparison with computer simulations of an equimolar mixture of oppositely charged, equally sized spheres indicate semiquantitative accuracy of the proposed formalism. We calculate global phase diagrams of binary mixtures of equally sized spheres with opposite charges and equal charge magnitude in terms of temperature, pressure, and composition. The influence of the screening of the Coulomb interaction upon the topology of the phase diagram is discussed. Insight into the topology of the global phase diagram as a function of the system parameters leads to predictions on the preparation conditions for specific binary colloidal crystals.  相似文献   

8.
The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.  相似文献   

9.
The structure and phase behavior of oppositely charged macroions in solution have been studied with Monte Carlo simulations using the primitive model where the macroions and small ions are described as charged hard spheres. Size and charge symmetric, size asymmetric, and charge asymmetric macroions at different electrostatic coupling strengths are considered, and the properties of the solutions have been examined using cluster size distribution functions, structure factors, and radial distribution functions. At increasing electrostatic coupling, the macroions form clusters and eventually the system displays a phase instability, in analogy to that of simple electrolyte solutions. The relation to the similar cluster formation and phase instability occurring in solutions containing oppositely charged polymers is also discussed.  相似文献   

10.
The complexes formed between the positively charged random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) with oppositely charged biosurfactants (bile salts) were studied using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Studies showed that the complexes of the RCPs of MAPTAC and MePEGMA with less than 68 mol % of PEG content precipitate in water, whereas the complexes of the copolymer with 89 and 94 mol % of PEG content do not precipitate in the entire range of composition of the mixture including stoichiometric compositions when the electroneutral complexes are formed. The complexes with true hydrophobic domains, which are a prerequisite characteristic to serve as a carrier, can be obtained at much lower concentration than the critical micelle concentration of the corresponding surfactant. For a particular surfactant, hydrophobic domains are obtained at lower Z-/+ for the random copolymer with lower PEG content. The hydrodynamic radii of these complexes vary over a range of 20-35 nm. Overall results reveal that these complexes are qualitatively similar to the polyion complex micelles or block ionomer complexes obtained from the block copolymers and oppositely charged surfactants. As the surfactants used in this study are biocompatible, we hope that these soluble particles will be promising vectors in the field of drug delivery.  相似文献   

11.
12.
The structure of soft matter systems at interfaces is of utmost importance in the fields of nanopatterning and self-assembly. It has been shown that lamellar and hexagonal patterns can form on interfaces, for a wide variety of systems. The asphericity of charged domains is considered here for different strengths of the electrostatics, determined by the interface media, relative to the short range van der Waals interactions between the molecular components. The phase behavior of the surface structure is explored by using molecular dynamics simulations, including some dynamical aspects of the interaction between neighboring domains, using the Lindemann criterion [F. Lindemann, Z. Phys. 11, 609 (1910)]. The charge ratio of the electrostatic components influences the shape of the domains, as well as the degree of local order in the interdomain structure.  相似文献   

13.
We present a new method to incorporate hydrophilic charged nanoparticles into the lyotropic liquid crystal (LLC) template. This method is based on the effect of the polymer-induced phase separation (PIPS) and consists of two steps. In the first step, the nanoparticles are mixed with a surfactant micellar solution. In the second step, upon addition of polymer, phase separation is induced and the LLC phase doped with the nanoparticles is formed. Columnar hexagonal and lamellar LLC templates are obtained with the PIPS method. The ordering of the LLC phase can be controlled by the amount of polymer added to induce phase separation. The method works both for the system of nonionic surfactants and polymers and ionic surfactants and polyelectrolytes. We demonstrate that the PIPS method enables the fabrication of the LLC templates doped with positively or negatively charged nanoparticles as well as with a mixture of oppositely charged nanoparticles in arbitrary proportions.  相似文献   

14.
Statistical and local relaxation properties of two‐dimensional finite polymer systems (domains) are considered. The domains consist of a large number of semirigid chains with the finite contour length at free, half‐free and fixed boundary conditions for chain ends. The intermolecular orientational order at short distances between chains in the thick domains is similar to the order in infinite two‐dimensional systems. The correlations of orientation between sufficiently distant elements of different chains decay by the exponential law, but the effective constant of interchain interactions in the domain is proportional to the molecular weight of the chain. At the given intra‐and interchain interactions an elongtation of the chains leads to a local ordering of chains in the domain (at free boundary conditions) or, on the contrary, to the decreasing of the parameter of short‐range orientational order (at fixed and half‐free boundary conditions). Independently of type of boundary conditions the parameter of large‐range orientational order tends to zero with increasing of the chain contour length. Dynamical equations and relaxation spectrums for times of local motions are obtained. From time correlation functions of local relaxation the times of nano‐scaled mobility of chains were calculated in depending on the bending rigidity of chains, the parameter of interchain interactions, and the contour length of chains. At the given intra‐and interchain interactions an elongtation of chains forming the domain leads to to the slowing‐down of local mobility of chains in the domain. The comparison with experimental date obtained by dielectric relaxation and polarized luminescence methods on investigation of nano‐scaled mobility in the dilute melts of comb‐shaped polymers has been carried out.  相似文献   

15.
We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid phase separation. Furthermore, we use Brownian dynamics simulations to study the relation between gel formation and the equilibrium phase diagram. We find that, regardless of the interaction range, an interrupted liquid-gas phase separation is observed as the system is quenched into a state point where the gas-liquid separation is metastable. The structure of the gel formed in our experiments compares well with that of a simulated gel, indicating that gravity has only a minor influence on the local structure of this type of gel. This is supported by the experimental evidence that gels squeezed or stretched by gravity have similar structures, as well as by the fact that gels do not collapse as readily as in the case of colloid-polymer mixtures. Finally, we check whether or not crystallites are formed in the gel branches; we find crystalline domains for the longer ranged interactions and for moderate quenches to the metastable gas-liquid spinodal regime.  相似文献   

16.
The competitive interactions in ternary systems consisting of a slightly cross-linked polyelectrolyte hydrogel and the mixture of linear polyelectrolyte and micelle forming surfactant both oppositely charged relative to the polyelectrolyte network were studied. It was shown that the equilibrium in the competitive reactions depends on the linear polyion charge density and the length of the surfactant aliphatic radical. Dependency on these characteristics the interpolyelectrolyte complex formed by cross-linked and linear polyelectrolytes can uptake surfactant ions from water solution transforming into the cross-linked polyelectrolyte-surfactant complex and releasing the linear polyelectrolyte or vice versa. The ternary systems of this kind are perspective to design the novel family of delivery constructs.  相似文献   

17.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

18.
Mesostructures formed by dipolar particles confined between two parallel walls and subjected to an external field are studied by Monte Carlo simulations. The main focus of the work is the structural behavior of the Stockmayer fluid in the low density regime. The dependence of cluster thickness and ordering is estimated as a function of density and wall separation, the two most influential parameters, for large dipole moments and high field strengths. The great sensitivity of the structure to details of the short-range part of the interactions is pointed out. In particular, the attractive part of the Lennard-Jones potential is shown to play a major role in driving chain aggregation. The effect of confinement, evaluated by comparison with results for a bulk system, is most pronounced for a short range hard sphere potential. No evidence is found for a novel "gel-like" phase recently uncovered in low density dipolar colloidal suspensions [A. K. Agarwal and A. Yethiraj, Phys. Rev. Lett. 102, 198301 (2009)].  相似文献   

19.
We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.  相似文献   

20.
We present results of investigations of condensation of restricted primitive model of electrolyte solutions with association between oppositely charged ions confined to slitlike pores. The associative interaction leads to the formation of ionic pairs. It is accounted for by incorporating the first-order thermodynamic perturbation theory into the free energy functional. In order to elucidate the role of association, the phase diagrams are compared with those obtained by us recently [O. Pizio et al., J. Chem. Phys. 121, 11957 (2004)] for the restricted primitive model. The inclusion of the association into the theory leads to lowering the critical temperature for the fluid confined to pores with uncharged and with charged walls. We have observed that the average fraction of bonded ions is high along the coexistence envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号