首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and illustrate numerically a class of nanoscale, ultrafast logic gates with the further advantage of reconfigurability. Underlying the operation of the gates and their versatility is the concept of polarization control of the electromagnetic energy propagating via metal nanoparticle arrays. Specifically, a set of different logic gates is shown to obtain from a single metal nanoparticle junction by modification of the polarization properties of the input light sources. Implications and extensions of the gates are discussed.  相似文献   

2.
The nanoscale engineering of functional chemical assemblies has attracted recent research effort to provide dense information storage, miniaturized sensors, efficient energy conversion, light-harvesting, and mechanical motion. Functional nanoparticles exhibiting unique photonic, electronic and catalytic properties provide invaluable building blocks for such nanoengineered architectures. Metal nanoparticle arrays crosslinked by molecular receptor units on electrodes act as selective sensing interfaces with controlled porosity and tunable sensitivity. Photosensitizer/electron-acceptor bridged arrays of Au-nanoparticles on conductive supports act as photoelectrochemically active electrodes. Semiconductor nanoparticle composites on surfaces act as efficient light collecting systems, and nanoengineered semiconductor 'core-shell' nanocrystal assemblies reveal enhanced photoelectrochemical performance due to effective charge separation. Layered metal and semiconductor nanoparticle arrays crosslinked by nucleic acids find applications in the optical, electronic and photoelectrochemical detection of DNA. Metal and semiconductor nanoparticles assembled on DNA templates may be used to generate complex electronic circuitry. Nanoparticles incorporated in hydrogel matrices yield new composite materials with novel magnetic, optical and electronic properties.  相似文献   

3.
Frequency-scanned excitation profiles of coherent second harmonic generation (SHG) were measured for silver nanoparticle arrays prepared by nanosphere lithography. The frequency of the fundamental beam did not coincide with the localized surface plasmon resonance (LSPR) of the nanoparticles and was tuned so that the coherent second harmonic (SH) emission was in the region of the LSPR at 720-750 nm. The SH emission from the arrays was compared with a smooth silver film to identify an enhancement of SH emission efficiency that peaks near approximately 650 nm for nanoparticles 50 nm in height. The polarization and orientation dependence of this enhancement suggests that it is related to a dipolar LSPR mode polarized normal to the plane of the substrate. Linear extinction spectra are dominated by in-plane dipoles and do not show this weak out-of-plane LSPR mode. The nanoparticle arrays are truncated tetrahedrons symmetrically oriented by nanosphere lithography to cancel SH from in-plane dipoles which allows observation of the weak out-of-plane component.  相似文献   

4.
Gold (Au) nanoparticle arrays with tunable morphology and optical characteristics were synthesized by in-situ self-assembly process that occurred on the surface of aniline-modified polystyrene (PS) microspheres. The method can be used to control the growth of both single and aggregated Au nanoparticle arrays on PS microsphere surface. This method could also be adapted for synthesis of other noble metals hybrid materials, which opens exciting opportunities for their practical applications.  相似文献   

5.
Nanoparticle cluster arrays (NCAs) are novel electromagnetic materials whose properties depend on the size and shape of the constituent nanoparticle clusters. A rational design of NCAs with defined optical properties requires a thorough understanding of the geometry dependent optical response of the building blocks. Herein, we systematically investigate the near- and far-field responses of clusters of closely packed 60 nm gold nanoparticles (n ≤ 7) as a function of size and cluster geometry through a combination of experimental spectroscopy and generalized Mie Theory calculations. From all of the investigated cluster configurations, nanoparticle trimers with D(3h) geometry and heptamers in D(6h) geometry stand out due to their polarization insensitive responses and high electric (E-) field intensity enhancement, making them building blocks of choice in this size range. The near-field intensity maximum of the D(6h) heptamer is red-shifted with regard to the D(3h) trimer by 125 nm, which confirms the possibility of a rational tuning of the near-field response in NCAs through the choice of the constituent nanoparticle clusters. For the nanoparticle trimer we investigate the influence of the cluster geometry on the optical response in detail and map near- and far-field spectra associated with the transition of the cluster configuration from D(3h) into D(∞h).  相似文献   

6.
We use a finite-difference time-domain (FDTD) approach to describe and control light-induced charge dynamics via two constructs consisting of nanoscale silver cylinders. The charge dynamics is found to be significantly different from the energy dynamics intensively studied in the past in similar systems. It is shown that two-color sources with a tunable relative phase introduce the opportunity to control the charge dynamics via a simple and interesting control mechanism, namely, the time evolution of the charge is directly tied to the instantaneous value of the source fields. Hence, our ability to shape laser pulses and tailor their relative phases and amplitudes translates directly into the possibility of manipulating charge oscillations within metal nanoparticle arrays.  相似文献   

7.
A multiscale method is presented that allows for evaluation of plasmon-enhanced optical properties of nanoparticle/molecule complexes with no additional cost compared to standard electrodynamics (ED) and linear response quantum mechanics (QM) calculations for the particle and molecule, respectively, but with polarization and orientation effects automatically described. The approach first calculates the total field of the nanoparticle by ED using the finite difference time domain (FDTD) method. The field intensity in the frequency domain as a function of distance from the nanoparticle is calculated via a Fourier transform. The molecular optical properties are then calculated with QM in the frequency domain in the presence of the total field of the nanoparticle. Back-coupling due to dipolar reradiation effects is included in the single-molecule plane wave approximation. The effects of polarization and partial orientation averaging are considered. The QM/ED method is evaluated for the well-characterized test case of surface-enhanced Raman scattering (SERS) of pyridine bound to silver, as well as for the resonant Raman chromophore rhodamine 6G. The electromagnetic contribution to the enhancement factor is 10(4) for pyridine and 10(2) for rhodamine 6G.  相似文献   

8.
Nanometer-sized metal and semiconductor particles possess novel properties. To fully realize their potential, these nanoparticles need to be fabricated into ordered arrays or predesigned structures. A promising nanoparticle fabrication method is coupled surface passivation and self-assembly of surfactant-coated nanoparticles. Due to the empirical procedure and partially satisfactory results, this method still represents a major challenge to date and its refinement can benefit from fundamental understanding. Existing evidences suggest that the self-assembly of surfactant-coated nanoparticles is induced by surfactant-modified interparticle interactions and follows an intrinsic road map such that short one-dimensional (1D) chain arrays of nanoparticles occur first as a stable intermediate before further assembly takes place to form higher dimensional close-packed superlattices. Here we report a study employing fundamental analyses and Brownian dynamics simulations to elucidate the underlying pair interaction potential that drives the nanoparticle self-assembly via 1D arrays. We find that a pair potential which has a longer-ranged repulsion and reflects the effects of surfactant chain interdigitation on the dynamics is effective in producing and stabilizing nanoparticle chain arrays. The resultant potential energy surface is isotropic for dispersed nanoparticles but becomes anisotropic to favor the growth of linear chain arrays when self-assembly starts.  相似文献   

9.
Using femtosecond transient spectroscopy, we studied the optically detected laser-induced coherent phonon oscillation of monolayers of periodic arrays of prismatic-shaped silver and gold nanoparticles, assembled by using the technique of nanosphere lithography. In this method, the same size of polystyrene sphere and the same vacuum conditions are used. Under these circumstances, the gold nanoprisms formed are found to have sharper tips than the corresponding silver nanoprisms. For both gold and silver nanoparticles, the surface plasmon absorption maximum is found to depend linearly on size. The coherent lattice oscillation periods are also found to depend linearly on size. However, although the observed dependence for the silver nanoparticle is found to follow the calculated dependence of a single particle on size (based on a one-dimensional standing wave model), the gold nanoparticle deviates from this model, and the deviation is found to increase with the size of the nanoparticles. This deviation can be explained by considering interparticle coupling. A simple interparticle lattice oscillating dipolar coupling model of the dimer is found to qualitatively account for both the sign and the size dependence of the deviation. The absence of this deviation in the silver nanoparticle arrays is blamed on the weak interparticle coupling due to their rounded tips and the possibility of oxidation of their surfaces.  相似文献   

10.
The enhancement of resonance Raman scattering by coupling to the plasmon resonance of a metal nanoparticle is developed by treating the molecule-metal interaction as transition dipole coupling between the molecular electronic transition and the much stronger optical transition of the nanoparticle. A density matrix treatment accounts for coupling of both transitions to the electromagnetic field, near-resonant energy transfer between the molecule-excited and nanoparticle-excited states, and dephasing processes. This fully quantum mechanical approach reproduces the interference effects observed in extinction spectra of J-aggregated dyes adsorbed to metal nanoparticles and makes testable predictions for surface-enhanced resonance Raman excitation profiles.  相似文献   

11.
Recently, the possibility of transporting electromagnetic energy as local-plasmon-polariton waves along arrays of silver nanoparticles was demonstrated experimentally [S. A. Maier et al., Nat. Mater. 2, 229 (2003)]. It was shown that dipole coupling facilitates phase-coherent excitation waves, which propagate while competing against decoherence effects occurring within each dot. In this article the authors study the ideal coherent shuttling in such a system, leaving decoherence for future investigation. In the weak field limit, the waves obey a Schrodinger equation, to be solved using either time-dependent wave-packet or energy resolved scattering techniques. The authors study some dynamical characteristics of these waves, emphasizing intuition and insight. Scattering from barriers, longitudinal-transverse coupling and acceleration methods are studied in detail. The authors also discuss briefly two-dimensional arrays and a simple decoherence model.  相似文献   

12.
We demonstrate a new hierarchical self-assembly strategy for the formation of photonic arrays containing quantum dots (QDs), in which sequential self-assembly steps introduce organization on progressively longer length scales, ranging from the nanoscale to the microscale regimes. The first step in this approach is the self-assembly of diblock copolymers to form block ionomer reverse micelles (SA1); within each micelle core, a single CdS QD is synthesized to yield the hybrid building block BC-QD. Once SA1 is completed, the hydrophobic BD-QD building blocks are blended with amphiphilic block copolymer stabilizing chains in an organic solvent; water addition induces secondary self-assembly (SA2) to form quantum dot compound micelles (QDCMs). Finally, aqueous dispersions of QDCMs are slowly evaporated to induce the formation of three-dimensional (3D) close-packed arrays in a tertiary self-assembly step (SA3). The resulting hierarchical assemblies, consisting of a periodic array of hybrid spheres each containing multiple CdS QDs, exhibit the collective property of a photonic stop band, along with photoluminescence arising from the constituent QDs. A high degree of structural control is possible at each level of organization by judicious selection of experimental variables, allowing various parameters governing the collective optical properties, including QD size, nanoparticle spacing, and mesocale periodicity, to be independently tuned. The resulting control over optical properties via successive self-assembly steps should provide new opportunities for hierarchical materials for QD lasers and all-optical switching.  相似文献   

13.
Electrochemical techniques are widely used for the fabrication of nanostructured materials, yet a desired high-density nanoparticle arrays remains a challenge. Here large-area and high-density gold nanoparticle arrays with sub-10 nm gaps have been, for the first time, synthesized on Si(1 0 0) substrate within an electrochemical deposition system via the application of an unusually high over-potential. The extremely high over-potential contributes to the relatively small critical island size and high nucleation rate. It is believed that this method can be extended to the electrochemical fabrication nanoparticle arrays of other materials.  相似文献   

14.
Wavelength-scanned surface-enhanced Raman excitation spectroscopy   总被引:1,自引:0,他引:1  
A detailed wavelength-scanned surface-enhanced Raman excitation spectroscopy (WS SERES) study of benzenethiol adsorbed on Ag nanoparticle arrays, fabricated by nanosphere lithography (NSL), is presented. These NSL-derived Ag nanoparticle array surfaces are both structurally well-characterized and extremely uniform in size. The WS SERES spectra are correlated, both spatially and spectrally, with the corresponding localized surface plasmon resonance (LSPR) spectra of the nanoparticle arrays. The surface-enhanced Raman scattering (SERS) spectra were measured in two excitation wavelength ranges: (1) 425-505 nm, and (2) 610-800 nm, as well as with the 532-nm line from a solid-state diode-pumped laser. The WS SERES spectra have line shapes similar to those of the LSPR spectra. The maximum SERS enhancement factor is shown to occur for excitation wavelengths that are blue-shifted with respect to the LSPR lambda(max) of adsorbate-covered nanoparticle arrays. Three vibrational modes of benzenethiol (1575, 1081, and 1009 cm(-1)) are studied simultaneously on one substrate, and it is demonstrated that the smaller Raman shifted peak shows a maximum enhancement closer to the LSPR lambda(max) than that of a larger Raman shifted peak. This is in agreement with the predictions of the electromagnetic (EM) enhancement mechanism of SERS. Enhancement factors of up to approximately 10(8) are achieved, which is also in good agreement with our previous SERES studies.  相似文献   

15.
We report the ultrasensitive detection of adenine using deep-UV surface-enhanced resonance Raman scattering on aluminum nanostructures. Well-defined Al nanoparticle arrays fabricated over large areas using extreme-UV interference lithography exhibited sharp and tunable plasmon resonances in the UV and deep-UV wavelength ranges. Theoretical modeling based on the finite-difference time-domain method was used to understand the near-field and far-field optical properties of the nanoparticle arrays. Raman measurements were performed on adenine molecules coated uniformly on the Al nanoparticle arrays at a laser excitation wavelength of 257.2 nm. With this technique, less than 10 amol of label-free adenine molecules could be detected reproducibly in real time. Zeptomole (~30,000 molecules) detection sensitivity was readily achieved proving that deep-UV surface-enhanced resonance Raman scattering is an extremely sensitive tool for the detection of biomolecules.  相似文献   

16.
Nanoparticle Cluster Arrays (NCAs) are a class of electromagnetic materials that comprise chemically defined nanoparticles assembled into clusters of defined size in an extended deterministic arrangement. NCAs are fabricated through integration of chemically synthesized building blocks into predefined patterns using a hybrid top-down/bottom-up fabrication approach that overcomes some of the limitations of conventional top-down fabrication methods with regard to minimum available feature size and structural complexity. NCAs can sustain near-field interactions between nanoparticles within individual clusters as well as between entire neighboring clusters. The availability of near-field interactions on multiple length scales - together with the ability to further enhance the coupled plasmon modes through photonic modes in carefully designed array morphologies - leads to a multiscale cascade electromagnetic field enhancement throughout the array. This feature article introduces the design and fabrication fundamentals of NCAs and characterizes the electromagnetic coupling mechanisms in the arrays. Furthermore, it reviews how the optical properties of NCAs can be tuned through the size and shape of the nanoparticle building blocks and the geometry, size, and separation of the assembled clusters. NCAs have potential applications in many different areas; this feature article focuses on plasmon enhanced biosensing and surface enhanced Raman spectroscopy (SERS), in particular.  相似文献   

17.
Transformation of 2D Au nanoparticle (NP) arrays into large scale, ordered, and oriented nanorod/nanowire arrays supported on a transferrable polymer film has been accomplished. E-beam irradiation followed by room temperature aging of a suspended Au NP/polymethylmethacrylate (PMMA) polymer close packed monolayer results in one-dimensional nanoparticle aggregation, reorientation, and sintering into a high density array of oriented Au nanowires with coherent single-crystal-like interfaces. Molecular dynamics simulations of alkane-thiol capped Au NPs, interacting through the Vincent potential and undergoing 2D Poisson compression, account semiquantitatively for the qualitative features of the transformation. This fabrication approach should be extendable to directing 1D aggregation of highly anisotropic nanostructures in arbitrary NP systems.  相似文献   

18.
One dimensional (1D) nanostructures have many possible applications in electronic, optical, and sensing devices associated with their nanosized lateral dimensions. In this regard, a general and bottom-up strategy to synthesize 1D nanoparticle arrays and conductive nanowires with a facile structural/compositional control is highly desired. We herein report a protein-sheathed single walled carbon nanotube (SWNT) that satisfies the criteria for an ideal template to assemble micron-long gold nanoparticle (AuNP) linear arrays with high structural rigidity. The resulting AuNP array has minimized inter-particle gaps, which is especially useful to template the overgrowth of Ag, Pd, and Pd/Ag metals into continuous nanowires (Au@M, M=Ag, Pd, Ag/ Pd). Our method successfully overcomes the incompatibility between carbon and metal materials, and the resulting superstructured metal nanowires have a tunable diameter below 100 nm and a shape closely replicating a SWNT. The Ag nanowires are composed of coalesced Au@Ag coreshell nanoparticles, while the Pd and Pd/Ag nanowires are made of very fine Pd nanocrystallites around the AuNP cores. These unique structural features are pivotal to various applications including surface enhanced Raman scattering (SERS), electrocatalysis, and gas sensors.  相似文献   

19.
We report a straightforward method for preparation of freestanding transparent polymer film containing 2D silver nanoparticle arrays and possessing polarization-sensitive optical properties.  相似文献   

20.
An optimal control approach based on multiple parameter genetic algorithms is applied to the design of plasmonic nanoconstructs with predetermined optical properties and functionalities. We first develop nanoscale metallic lenses that focus an incident plane wave onto a prespecified, spatially confined spot. Our results illustrate the mechanism of energy flow through wires and cavities. Next we design a periodic array of silver particles to modify the polarization of an incident, linearly polarized plane wave in a desired fashion while localizing the light in space. The results provide insight into the structural features that determine the birefringence properties of metal nanoparticles and their arrays. Of the variety of potential applications that may be envisioned, we note the design of nanoscale light sources with controllable coherence and polarization properties that could serve for coherent control of molecular, electronic, or electromechanical dynamics in the nanoscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号