首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent Kerr relaxation experiments by Gottke et al. have revealed the existence of a pronounced temporal power law decay in the orientational relaxation near the isotropic-nematic phase transition (INPT) of nematogens of rather small aspect ratio, kappa (kappa approximately 3-4). We have carried out very long (50 ns) molecular dynamics simulations of model (Gay-Berne) prolate ellipsoids with aspect ratio 3 in order to investigate the origin of this power law. The model chosen is known to undergo an isotropic to nematic phase transition for a range of density and temperature. The distance dependence of the calculated angular pair correlation function correctly shows the emergence of a long range correlation as the INPT is approached along the density axis. In the vicinity of INPT, the single particle second rank orientational time correlation function exhibits power law decay, (t(-alpha)) with exponent alpha approximately 2/3. More importantly, we find the sudden appearance of a pronounced power-law decay in the collective part of the second rank orientational time correlation function at short times when the density is very close to the transition density. The power law has an exponent close to unity, that is, the correlation function decays almost linearly with time. At long times, the decay is exponential-like, as predicted by Landau-de Gennes mean field theory. Since Kerr relaxation experiments measure the time derivative of the collective second rank orientational pair correlation function, the simulations recover the near independence of the signal on time observed in experiments. In order to capture the microscopic essence of the dynamics of pseudonematic domains inside the isotropic phase, we introduce and calculate a dynamic orientational pair correlation function (DOPCF) obtained from the coefficients in the expansion of the distinct part of orientational van Hove time correlation function in terms of spherical harmonics. The DOPCF exhibits power law relaxation when the pair separation length is below certain critical length. The orientational relaxation of a local director, defined in terms of the sum of unit vectors of all the ellipsoidal molecules, is also found to show slow power law relaxation over a long time scale. These results have been interpreted in terms of a newly developed mode coupling theory of orientational dynamics near the INPT. In the present case, the difference between the single particle and the collective orientational relaxation is huge which can be explained by the frequency dependence of the memory kernel, calculated from the mode coupling theory. The relationship of this power law with the one observed in a supercooled liquid near its glass transition temperature is explored.  相似文献   

2.
In this work, we present results from molecular dynamics simulations on the single-molecule relaxation of water within reverse micelles (RMs) of different sizes formed by the surfactant aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulfosuccinate) in isooctane. Results are presented for RM water content w(0) = [H(2)O]/[AOT] in the range from 2.0 to 7.5. We show that translational diffusion of water within the RM can, to a good approximation, be decoupled from the translation of the RM through the isooctane solvent. Water translational mobility within the RM is restricted by the water pool dimensions, and thus, the water mean-squared displacements (MSDs) level off in time. Comparison with models of diffusion in confined geometries shows that a version of the Gaussian confinement model with a biexponential decay of correlations provides a good fit to the MSDs, while a model of free diffusion within a sphere agrees less well with simulation results. We find that the local diffusivity is considerably reduced in the interfacial region, especially as w(0) decreases. Molecular orientational relaxation is monitored by examining the behavior of OH and dipole vectors. For both vectors, orientational relaxation slows down close to the interface and as w(0) decreases. For the OH vector, reorientation is strongly affected by the presence of charged species at the RM interface and these effects are especially pronounced for water molecules hydrogen-bonded to surfactant sites that serve as hydrogen-bond acceptors. For the dipole vector, orientational relaxation near the interface slows down more than that for the OH vector due mainly to the influence of ion-dipole interactions with the sodium counterions. We investigate water OH and dipole reorientation mechanisms by studying the w(0) and interfacial shell dependence of orientational time correlations for different Legendre polynomial orders.  相似文献   

3.
The rotational dynamics of a number of diatomic molecules adsorbed at different locations at the interface between water and its own vapors are studied using classical molecular dynamics computer simulations. Both equilibrium orientational and energy correlations and nonequilibrium orientational and energy relaxation correlations are calculated. By varying the dipole moment of the molecule and its location, and by comparing the results with those in bulk water, the effects of dielectric and mechanical frictions on reorientation dynamics and on rotational energy relaxation can be studied. It is shown that for nonpolar and weekly polar solutes, the equilibrium orientational relaxation is much slower in the bulk than at the interface. As the solute becomes more polar, the rotation slows down and the surface and bulk dynamics become similar. The energy relaxation (both equilibrium and nonequilibrium) has the opposite trend with the solute dipole (larger dipoles relax faster), but here again the bulk and surface results converge as the solute dipole is increased. It is shown that these behaviors correlate with the peak value of the solvent-solute radial distribution function, which demonstrates the importance of the first hydration shell structure in determining the rotational dynamics and dependence of these dynamics on the solute dipole and location.  相似文献   

4.
In this work, we performed Monte Carlo simulations on a lattice model for spontaneous amphiphilic aggregation, in order to study the orientational and hydrogen-bonding dynamics of water on different regions inside the micellar solution. We employed an associating lattice gas model that mimics the aqueous solvent, which presents a rich phase diagram with first- and second-order transition lines. Even though this is a simplified model, it makes possible to investigate the orientational dynamics of water in an equilibrium solution of amphiphiles, as well as the influence of the different phases of the solvent in the interfacial and bulk water dynamics. By means of extensive simulations, we showed that, at high temperatures, the behavior of the orientational relaxation and hydrogen bonding of water molecules in the bulk, first, and second hydration shells are considerable different. We observe the appearance of a very slow component for water molecules in the first hydration shell of micelles when the system reaches a high-density phase, consistent with previous theoretical and experimental studies concerning biological water. Also, at high temperatures, we find that water molecules in the second hydration shell of micelles have an orientational decay similar to that of bulk water, but with a generally slower dynamics. Otherwise, at low temperatures, we have two components for the orientational relaxation of bulk water in the low density liquid phase, and only a single component in the high density liquid (HDL) phase, which reflect the symmetry properties of the different phases of the solvent model. In the very dense region of water molecules in the first hydration shell of micelles at low temperatures, we find two components for the orientational relaxation on both liquid phases, one of them much slower than that in the single component of bulk water in the HDL phase. This happens even though our model does not present any hindrance to the water rotational freedom caused by the presence of the amphiphiles.  相似文献   

5.
A core/shell model has often been used to describe water confined to the interior of reverse micelles. The validity of this model for water encapsulated in AOT/isooctane reverse micelles ranging in diameter from 1.7 to 28 nm (w0 = 2-60) and bulk water is investigated using four experimental observables: the hydroxyl stretch absorption spectra, vibrational population relaxation times, orientational relaxation rates, and spectral diffusion dynamics. The time dependent observables are measured with ultrafast infrared spectrally resolved pump-probe and vibrational echo spectroscopies. Major progressive changes appear in all observables as the system moves from bulk water to the smallest water nanopool, w0 = 2. The dynamics are readily distinguishable for reverse micelle sizes smaller than 7 nm in diameter (w0 = 20) compared to the response of bulk water. The results also demonstrate that the size dependent absorption spectra and population relaxation times can be quantitatively predicted using a core-shell model in which the properties of the core (interior of the nanopool) are taken to be those of bulk water and the properties of the shell (water associated with the headgroups) are taken to be those of w0 = 2. A weighted sum of the core and shell components reproduces the size dependent spectra and the nonexponential population relaxation dynamics. However, the same model does not reproduce the spectral diffusion and the orientational relaxation experiments. It is proposed that, when hydrogen bond structural rearrangement is involved (orientational relaxation and spectral diffusion), dynamical coupling between the shell and the core cause the water nanopool to display more homogeneous dynamics. Therefore, the absorption spectra and vibrational lifetime decays can discern different hydrogen bonding environments whereas orientational and spectral diffusion correlation functions predict that the dynamics are size dependent but not as strongly spatially dependent within a reverse micelle.  相似文献   

6.
Layer-wise, distance-dependent orientational relaxation of water confined in reverse micelles (RM) is studied using theoretical and computational tools. We use both a newly constructed "spins on a ring" (SOR) Ising-type model (with Shore-Zwanzig rotational dynamics) and atomistic simulations with explicit water. Our study explores the effect of reverse micelle size and role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the interface) dependence of water relaxation. The "spins on a ring" model can capture some aspects of distance dependence of relaxation, such as acceleration of orientational relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond formation pattern clearly reveals that hydrogen bond arrangement of water at a certain distance away from the surface can remain frustrated due to the interaction with the polar surface head groups. This layer-wise analysis also reveals the presence of a non-monotonic slow relaxation component which can be attributed to this frustration effect and which is accentuated in small to intermediate size RMs. For large size RMs, the long time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface.  相似文献   

7.
The collective polarizability anisotropy dynamics in a set of three aromatic liquids, benzene (Bz), hexafluorobenzene (HFB), and 1,3,5-trifluorobenzene (TFB), has been studied by molecular dynamics simulation. These liquids have very similar shapes, but different electrostatic interactions due to opposite polarities of C-H and C-F bonds, giving rise to different local intermolecular structures in the liquid phase. We have investigated how these structural arrangements affect polarizability anisotropy dynamics observed in optical Kerr-effect (OKE) spectroscopy. We have modeled the interaction-induced polarizability with the first-order dipole-induced dipole approximation, with the molecular polarizability distributed over the carbon sites. Local contributions to the librational OKE spectrum were computed separately for molecules participating in parallel or perpendicular relative orientations within the first coordination shell. We found that the relative locations of parallel and perpendicular librational bands of the OKE spectra are closely related to the corresponding pair energy distributions of the closest four neighbors of a given molecule, corresponding to a model of a harmonic oscillator in a cage of nearest neighbors. This model predicts higher librational frequencies for more attractive intermolecular interactions, which in all three liquids correspond to parallel local arrangements. On the diffusive orientational time scale, all three liquids exhibit slower relaxation of molecules in parallel arrangements, although the difference in relaxation rates is substantial only in TFB, which has the strongest tendency toward parallel stacking. The analysis of the collective polarizability relaxation was performed using two different approaches, the projection scheme (J. Chem. Phys. 1980, 72, 2801) and the theory developed by Steele (Mol. Phys. 1987, 61, 1031) for the second time derivatives applied to collective time correlations. Both approaches allow the decomposition of the OKE response into contributions from orientational relaxation and other dynamical processes. We find that they lead to different predictions on how the response depends on collective reorientation and processes arising from fluctuations in the interaction-induced polarizability. We discuss the reasons for these differences and the advantages and disadvantages of the two analysis schemes.  相似文献   

8.
Fourier transform infrared dichroism has been used to investigate molecular orientation in polymeric materials. It is first applied to characterize network behavior in some elastomeric systems such as model networks of poly(dimethylsiloxane). The strain dependence of segmental orientation is analyzed through networks of known degree of cross-linking and experimental results are compared with calculation predictions based on the rotational isomeric state formalism. Infrared dichroism spectroscopy has also been used to analyze orientational relaxation in binary blends of long and short polystyrene chains. The effect of short deuterated chains (Mw = 3000 to 72000) on the orientational relaxation of long entangled chains (Mw = 2 000 000) is examined in the bidisperse melts uniaxially deformed above the glass transition temperature. While the long chain relaxation is found to be dependent on the short-chain concentration, the local orientational order of the latter is molecular weight dependent in agreement with the classical relaxation theories.  相似文献   

9.
We present the orientational relaxation times in protic and aprotic solvents for rose bengal in its lowest excited singlet state. The method uses a mode locked dye laser for polarized excitation, and time correlated single photon counting for determination of the time resolved polarized fluorescence. The observed orientational decay for the dipolar aprotic solvents and the alcohols are in agreement with the values predicted by the Stokes-Einstein diffusion equation. In the latter solvents, volume and shape corrections must be made for attachment of the alcohol to the two anion sites of the dye molecule. The solvent N-methylformamide, however, shows rose bengal reorienting much faster than the alcohols. Our interpretation of this data suggests that agreement with the Stokes-Einstein equation (stick boundary conditions) is coincidental. We propose a solvent torque model in which the solvent interaction at each anion site of rose bengal controls the deviations from an expected slip boundary condition. This qualitative model is used to correlate our data as well as relevant data in the literature. The values in picoseconds for the observed orientational relaxation times are given in parenthesis; acetone (70), DMF (160), DMSO (420), MeOH (190), EtOH (450), isopropanol (840), NMF (500).  相似文献   

10.
Second-rank orientational correlation functions (pertaining to Kerr effect relaxation and Raman scattering) are obtained using the extended rotational diffusion (J-diffusion) model of symmetric top polar molecules in a strong constant external field. It is shown that the shape of the molecule noticeably affects all second-rank correlation functions and relaxation times in the rare collision limit. In the opposite limit of frequent collisions, the quantities of interest are shown to be shape independent as a consequence of vanishingly small inertial effects. An interpolation formula for the orientation relaxation times in the intermediate regime between the rare and frequent collision limits is also given.  相似文献   

11.
The ultrafast dynamics of liquid sulphur dioxide have been studied over a wide temperature range and in solution. The optically heterodyne-detected and spatially masked optical Kerr effect (OKE) has been used to record the anisotropic and isotropic third-order responses, respectively. Analysis of the anisotropic response reveals two components, an ultrafast nonexponential relaxation and a slower exponential relaxation. The slower component is well described by the Stokes-Einstein-Debye equation for diffusive orientational relaxation. The simple form of the temperature dependence and the agreement between collective (OKE) and single molecule (e.g., NMR) measurements of the orientational relaxation time suggests that orientational pair correlation is not significant in this liquid. The relative contributions of intermolecular interaction-induced and single-molecule orientational dynamics to the ultrafast part of the spectral density are discussed. Single-molecule librational-orientational dynamics appear to dominate the ultrafast OKE response of liquid SO2. The temperature-dependent OKE data are transformed to the frequency domain to yield the Raman spectral density for the low-frequency intermolecular modes. These are bimodal with the lowest-frequency component arising from diffusive orientational relaxation and a higher-frequency component connected with the ultrafast time-domain response. This component is characterized by a shift to higher frequency at lower temperature. This result is analyzed in terms of a harmonic librational oscillator model, which describes the data accurately. The observed spectral shifts with temperature are ascribed to increasing intermolecular interactions with increasing liquid density. Overall, the dynamics of liquid SO2 are found to be well described in terms of molecular orientational relaxation which is controlled over every relevant time range by intermolecular interactions.  相似文献   

12.
We have performed classical molecular dynamics simulations to calculate the Optical Kerr effect (OKE) spectra of 1-methoxyethylpyridinium dicyanoamide, a room-temperature ionic liquid (IL) which has been recently studied by Shirota and Castner (Shirota, H. ; Castner, E. J. Phys. Chem. A 2005, 109, 9388-9392) in comparison to its neutral isoelectronic solvent mixture. Our theoretical and computational studies show that the decay of the collective polarizability anisotropy correlation exhibits several different time scales originating from inter- and intramolecular dynamics, in good agreement with experiments. What's more, we find that the portion of the collective anisotropic polarizability relaxation due to "interaction-induced" phenomena is important at times much longer than those observed in normal solvents when these are far from their glass transition temperature. From our long (60 ns) molecular dynamics simulations, we are able to determine the appropriate time scales for orientational relaxation and interaction-induced processes occurring in the liquid. We find that the cationic contribution to the OKE signal is predominant. Because of the slow nature of relaxation processes in ILs, these calculations are very time, memory, and storage intensive. In the context of this research, we have developed a polarizable force field for this system and also theoretical methodology to generate molecular polarizabilities for arbitrarily shaped molecules and ions from corresponding atomic polarizabilities. We expect this methodology to have an important impact on the speed of molecular dynamics simulations of polarizable systems in the future.  相似文献   

13.
In order to adequately describe molecular rotation far from equilibrium, we have generalized the J-diffusion model by allowing the rotational relaxation rate to be angular momentum dependent. The calculated nonequilibrium rotational correlation functions (CFs) are shown to decay much slower than their equilibrium counterparts, and orientational CFs of hot molecules exhibit coherent behavior, which persists for several rotational periods. As distinct from the results of standard theories, rotational and orientational CFs are found to dependent strongly on the nonequilibrium preparation of the molecular ensemble. We predict the Arrhenius energy dependence of rotational relaxation times and violation of the Hubbard relations for orientational relaxation times. The standard and generalized J-diffusion models are shown to be almost indistinguishable under equilibrium conditions. Far from equilibrium, their predictions may differ dramatically.  相似文献   

14.
In this study, shape‐memory polyurethane (SMPU) fibers were strain hardened by cold‐drawing programming (CDP) process. The programmed fibers are experimentally studied on the physical and thermomechanical properties. Structural relaxation, which determines shape memory capability of the SMP fibers, is quantified by conformational entropy change. Based on the entanglement tube theory and reptation theory, the entropic force is derived as a “bridge” to link the stress relaxation and structural relaxation, and thus structural relaxation can be evaluated by stress relaxation. It was found that the CDP SMPU fibers would still have good crackclosing capability after 13 years of hibernation in polymer matrix composite. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 966–977  相似文献   

15.
The motion of water molecules in mixtures of water and d6-dimethyl sulfoxide (DMSO) has been explored through molecular dynamics (MD) simulations using the SPC/E water model (J. Chem. Phys. 1987, 91, 6269) and the P2 DMSO model (J. Chem. Phys. 1993, 98, 8160). We evaluate the self-intermediate scattering functions, FS(Q,t), which are related by a Fourier transform to the incoherent structure factors, S(Q,omega), measured in quasielastic neutron scattering (QNS) experiments. We compare our results to recent QNS experiments on these mixtures reported by Bordallo et al. (J. Chem. Phys. 2004, 121, 12457). In addition to comparing the MD data to the experimental signals, which correspond to a convolution of S(Q,omega) with a resolution function, we examine the rotational and translational components of FS(Q,t) and investigate to what extent simulation results for the single-molecule dynamics follow the dynamical models that are used in the analysis of the experimental data. We find that the agreement between the experimental signal and the MD data is quite good and that the portion of FS(Q,t) due to translational dynamics is well represented by the jump-diffusion model. The model parameters and their composition dependence are in reasonable agreement with experiment, exhibiting similar trends in water mobility with composition. Specifically, we find that water motion is less hindered in water-rich and water-poor mixtures than it is near equimolar composition. We find that the extent of coupling between rotational and translational motion contributing to FS(Q,t) increases as the equimolar composition of the mixture is approached. Thus, the decoupling approximation, which is used to extract information on rotational relaxation from QNS spectra at higher momentum transfer (Q) values, becomes less accurate than that in water-rich or DMSO-rich mixtures. We also find that rotational relaxation deviates quite strongly from the isotropic rotational diffusion model. We explore this issue further by investigating the behavior of orientational time correlations for different unit vectors and corresponding to Legendre polynomials of orders 1-4. We find that the rotational time correlations of water molecules behave in a way that is more consistent with the extended jump rotation model recently proposed by Laage and Hynes (Science 2006, 311, 832).  相似文献   

16.
A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.  相似文献   

17.
We present results of the theoretical study and numerical calculation of the dynamics of molecular liquids based on the combination of the memory equation formalism and the reference interaction site model (RISM). Memory equations for the site-site intermediate scattering functions are studied in the mode-coupling approximation for the first-order memory kernels, while equilibrium properties such as site-site static structure factors are deduced from RISM. The results include the temperature-density (pressure) dependence of translational diffusion coefficients D and orientational relaxation times tau for acetonitrile in water, methanol in water, and methanol in acetonitrile--all in the limit of infinite dilution. Calculations are performed over the range of temperatures and densities employing the extended simple point charge model for water and optimized site-site potentials for acetonitrile and methanol. The theory is able to reproduce qualitatively all main features of temperature and density dependences of D and tau observed in real and computer experiments. In particular, anomalous behavior, i.e, the increase in mobility with density, is observed for D and tau of methanol in water, while acetonitrile in water and methanol in acetonitrile do not show deviations from the ordinary behavior. The variety exhibited by the different solute-solvent systems in the density dependence of the mobility is interpreted in terms of the two competing origins of friction, which interplay with each other as density increases: the collisional and dielectric frictions which, respectively, increase and decrease with increasing density.  相似文献   

18.
Measurements of the local orientational order and average chain anisotropy in non-uniform polystyrene are reported. Fourier-transform infrared dichroism spectroscopy has been used to determine the effects of short deuterated chains (Mw = 500 to 188 000) on the orientational relaxation of long entangled chains (Mw = 2 000 000) in bidisperse melts uniaxially deformed above the glass transition temperature. While the long-chain relaxation is found to be dependent on the short-chain concentration, the local orientational order of the latter is molecular weight dependent consistent with the classical relaxation theories. The FTIR experiments are also combined with small-angle neutron scattering measurements which probe the deuterated-chain anisotropy in the defomed melts. There is evidence, from the combination of the two techniques, that although the short chains possess a negligible local orientational order, there exists an important anisotopy in the short chain distribution in space.  相似文献   

19.
The dynamics of a rigid rod located between fixed junctions of a polymer network is studied. Three approaches are used in the solution of this problem. The first is based on the viscoelastic model, where a rigid rod is simulated by an elastic dumbbell with a fixed average length; the second includes solution of equations of motion for projections of the rigid rod using the Lagrangian multipliers under the constraint condition; and the third involves solution of the diffusion equation in the presence of an elastic potential. The second and third approaches allow calculation of orientational relaxation times for rod projections under the action of a strong orienting field. The dependences of the relaxation times of orientational and translational motions of the rod projections on the coordinate axes and the orientational relaxation times of mean-square rod projections on the model parameters (the distances between fixed polymer network junctions, the length of the rigid rod, and the elastic coefficient characterizing the binding between the rod and the network) are found.  相似文献   

20.
We present a theoretical study of the structure and dynamics of water-vapor interface by means of ab initio molecular dynamics simulations. The inhomogeneous density, hydrogen bond and orientational profiles, voids and vibrational frequency distributions are investigated. We have also studied various dynamical properties of the interface such as diffusion, orientational relaxation, hydrogen bond dynamics and vibrational frequency fluctuations. The diffusion and orientational relaxation of water molecules are found to be faster at the interface which can be correlated with the voids present in the system. The hydrogen bond dynamics, however, is found to be slightly slower at the interface than that in bulk water. The correlations of hydrogen bond relaxation with the dynamics of vibrational frequency fluctuations are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号