首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gündüz T  Kiliç E  Cakirer O 《Talanta》1996,43(5):771-776
Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.  相似文献   

2.
The characteristics of a surface plasmon resonance (SPR) sensor prepared by coating a metal film evaporated on a prism with a polymer film containing tetra-n-butyl thiuram disulfide (TBTDS) were studied. The differences in the sensitivity, selectivity, and detection limit for a Zn2+ ion of the SPR sensor were reported as a function of the thickness of the polymer film, the kind of a metal film, and the kind of a polymer film. The thinner was the polymer film, the higher was the sensitivity, and the lower was the detection limit. The Ag film gave to the SPR sensor higher sensitivity than the Au film. TBTDS contained in the poly(vinyl chloride) (PVC) film slightly improved the selectivity toward the Zn2+ ion. A non-conditioned poly(methyl methacrylate) (PMMA) film containing TBTDS gave a lower detection limit of 1.0 x 10(-6) mol/l, which is similar to that obtained by using an ion selective electrode (ISE) method, than the PVC film. The PVC film, however, gave higher concentration resolution than the PMMA film.  相似文献   

3.
从实验和理论两方面详细研究了金银合金膜表面等离子体共振(SPR)传感器在可见光波段的敏感特性.实验方面,通过在玻璃基底上溅射50 nm厚的金银合金薄膜制备了一种新型的SPR传感芯片,并且自行搭建了基于Kretschmann结构的波长检测型SPR传感器测试平台.利用不同浓度的氯化钠(NaCl)水溶液和浓度为10μmol·L-1的牛血清蛋白(BSA)水溶液分别作为折射率样品和分子吸附样品,研究了传感器的折射率灵敏度和吸附灵敏度,并与金膜和银膜SPR传感器进行了对比研究.结果表明,对于折射率灵敏度的测试,金银合金膜SPR传感器大幅高于金膜SPR传感器,略低于银膜SPR传感器;而对于吸附敏感的研究,金银合金膜SPR传感器的灵敏度与银膜SPR传感器相近,是金膜SPR传感器的3倍.理论方面,利用菲涅尔公式和等效折射率计算公式仿真计算了这三种薄膜结构的SPR传感器的灵敏度和精确度,结果指出金银合金膜SPR传感器的灵敏度与银膜SPR传感器接近,是常规金膜SPR传感器的2.31倍,而半高峰宽仅为金膜和银膜SPR传感器的1.36倍.在稳定性方面,金银合金膜SPR传感器与金膜SPR传感器均具有良好的化学稳定性,而银膜SPR传感器较易氧化,使用寿命低,不常被采用.综上,金银合金膜在改善传感器灵敏度的同时,不会降低精度,是一种高灵敏、低成本、良好稳定性的SPR传感器敏感材料.  相似文献   

4.
从实验和理论两方面详细研究了金银合金膜表面等离子体共振(SPR)传感器在可见光波段的敏感特性. 实验方面,通过在玻璃基底上溅射50 nm厚的金银合金薄膜制备了一种新型的SPR传感芯片,并且自行搭建了基于Kretschmann 结构的波长检测型SPR传感器测试平台. 利用不同浓度的氯化钠(NaCl)水溶液和浓度为10 μmol·L-1的牛血清蛋白(BSA)水溶液分别作为折射率样品和分子吸附样品,研究了传感器的折射率灵敏度和吸附灵敏度,并与金膜和银膜SPR传感器进行了对比研究. 结果表明,对于折射率灵敏度的测试,金银合金膜SPR传感器大幅高于金膜SPR传感器,略低于银膜SPR传感器;而对于吸附敏感的研究,金银合金膜SPR传感器的灵敏度与银膜SPR传感器相近,是金膜SPR传感器的3倍. 理论方面,利用菲涅尔公式和等效折射率计算公式仿真计算了这三种薄膜结构的SPR传感器的灵敏度和精确度,结果指出金银合金膜SPR传感器的灵敏度与银膜SPR传感器接近,是常规金膜SPR传感器的2.31倍,而半高峰宽仅为金膜和银膜SPR传感器的1.36 倍. 在稳定性方面,金银合金膜SPR传感器与金膜SPR传感器均具有良好的化学稳定性,而银膜SPR传感器较易氧化,使用寿命低,不常被采用. 综上,金银合金膜在改善传感器灵敏度的同时,不会降低精度,是一种高灵敏、低成本、良好稳定性的SPR传感器敏感材料.  相似文献   

5.
本实验建立了表面等离子体共振(SPR)生物传感器检测3-吲哚乙酸(IAA)的方法。制备了两种SPR生物传感器检测IAA:传统模式的SPR生物传感器1和Au/Ag合金纳米粒子增敏的SPR生物传感器2。结果发现:传感器1在IAA浓度范围为175~350μg/L时,浓度与其波数位移值呈线性关系,检出限为25μg/L(S/N=3);传感器2在IAA浓度范围为17.5~250μg/L时,浓度与其波数位移值呈线性关系,检出限为2.2μg/L(S/N=3)。说明基于Au/Ag合金纳米粒子的传感器2比传感器1有较高的灵敏度和较低的检出限。加标回收实验测得加标回收率范围为96%~100.2%,平均值为98.4%。本实验制备的SPR生物传感器具有较好的精密度、稳定性、重现性和特异性。  相似文献   

6.
Electropolymerization of aniline in the presence of poly(acrylic acid) on Au electrodes yields a polyaniline/poly(acrylic acid) composite film, exhibiting reversible redox functions in aqueous solutions at pH = 7.0. In situ electrochemical-SPR measurements are used to identify the dynamics of swelling and shrinking of the polymer film upon the oxidation of the polyaniline (PAn) to its oxidized state (PAn(2+)) and the reduction of the oxidized polymer (PAn(2+)) back to its reduced state (PAn), respectively. Covalent attachment of N(6)-(2-aminoethyl)-flavin adenin dinucleotide (amino-FAD, 1) to the carboxylic groups of the composite polyaniline/poly(acrylic acid) film followed by the reconstitution of apoglucose oxidase on the functional polymer yields an electrically contacted glucose oxidase of unprecedented electrical communication efficiency with the electrode: electron-transfer turnover rate approximately 1000 s(-1) at 30 degrees C. In situ electrochemical-SPR analyses are used to characterize the bioelectrocatalytic functions of the biomaterial-polymer interface. The current responses of the bioelectrocatalytic system increase as the glucose concentrations are elevated. Similarly, the SPR spectra of the system are controlled by the concentration of glucose. The glucose concentration controls the steady-state concentration ratio of PAn/PAn(2+) in the film composition. Therefore, the SPR spectrum of the film measured upon its electrochemical oxidation is shifted from the spectrum typical for the oxidized PAn(2+) at low glucose concentration to the spectrum characteristic of the reduced PAn at high glucose concentration. Similarly, the polyaniline/poly(acrylic acid) film acts as an electrocatalyst for the oxidation of NADH. Accordingly, an integrated bioelectrocatalytic assembly was constructed on the electrode by the covalent attachment of N(6)-(2-aminoethyl)-beta-nicotinamide adenine dinucleotide (amino-NAD(+), 2) to the polymer film, and the two-dimensional cross-linking of an affinity complex formed between lactate dehydrogenase and the NAD(+)-cofactor units associated with the polymer using glutaric dialdehyde as a cross-linker. In situ electrochemical-SPR measurements are used to characterize the bioelectrocatalytic functions of the system. The amperometric responses of the system increase as the concentrations of lactate are elevated, and an electron-transfer turnover rate of 350 s(-1) between the biocatalyst and the electrode is estimated. As the PAn(2+) oxidizes the NADH units generated by the biocatalyzed oxidation of lactate, the PAn/PAn(2+) steady-state ratio in the film is controlled by the concentration of lactate. Accordingly, the SPR spectrum measured upon electrochemical oxidation of the film is similar to the spectrum of PAn(2+) at low lactate concentration, whereas the SPR spectrum resembles that of PAn at high concentrations of lactate.  相似文献   

7.
In order to simplify the procedure for assembling a surface-plasmon resonance (SPR) sensor, a refractive index matching polymer film was prepared as an alternative to the conventionally used matching oil. The refractive index matching polymer film, the refractive index of which was nearly equal to the prism and sensor chip material (a cover glass) of the SPR sensor, was prepared by casting a tetrahydrofuran solution of poly (vinyl chloride) (PVC) containing equal weights of dioctyl phthalate and tricresyl phosphate. The refractive index matching polymer film was found to have a refractive index of 1.516, which is identical to that of the prism and the cover glass used for the present SPR sensor. The utility of the matching polymer film for the SPR sensor was confirmed by the detection of anti-human albumin, based on an antigen-antibody reaction.  相似文献   

8.
Jianlong Wang 《Talanta》2009,79(1):72-76
Features of Au NPs-aptamer conjugates as a powerful competitive reagent to substitute antibody in enhancing surface plasmon resonance spectroscopy (SPR) signal for the detection of small molecule are explored for the first time. In order to evaluate the sensing ability of Au NPs-aptamer conjugates as a competitive reagent, a novel SPR sensor based on indirect competitive inhibition assay (ICIA) for the detection of adenosine is constructed by employing the competitive reaction between antiadenosine aptamer with adenosine and antiadenosine aptamer with its partial complementary ss-DNA. The partial complementary ss-DNA of antiadenosine aptamer is firstly immobilized on SPR gold film as sensing surface. When the Au NPs-antiadenosine aptamer conjugates solution is added to SPR cell in the absence of adenosine, Au NPs-antiadenosine aptamer conjugates is adsorbed to SPR sensor by the DNA hybridization reaction, and results in a large change of SPR signal. However, the change of SPR signal is decreased when the mixing solution of adenosine with Au NPs-antiadenosine aptamer conjugates is added. This is because adenosine reacts with antiadenosine aptamer in Au NPs-antiadenosine aptamer conjugates and changes its structure from ss-DNA to tertiary structure, which cannot hybridize with its partial complementary ss-DNA immobilized on SPR gold surface. Based on this principle, a SPR sensor for indirect detection of adenosine can be developed. The experimental results confirm that the SPR sensor possesses a good sensitivity and a high selectivity for adenosine, which indirectly confirms that Au NPs-aptamer conjugates is a powerful competitive reagent. More significantly, it can be used to develop other SPR sensors based on ICIA to detect different targets by changing the corresponding type of aptamer in Au NPs-aptamer conjugates.  相似文献   

9.
The distribution of different aliphatic and aromatic amines: n-butylamine (n-BA), isobutylamine (i-BA), tert-butylamine (t-BA), piperidine (PIP), N,N-dimethylaniline (DMA) and N-methylaniline (MA) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate(AOT)/n-hexane reverse micelles was investigated by steady-state fluorescence measurements. The partition constants were measured by an indirect method based on the effect that amine partitioning exert on the bimolecular rate of the reaction between a microphase incorporated fluorophore (Ru(bpy)2+(3)) and the quencher, (Fe(CN)3-(6)). For MA, that can act as a quencher of the fluorophore a direct method was used. The results show that primary amines have larger partition constants than the secondary ones. For tertiary amines the distribution constants were practically negligible. Laser flash photolysis experiments confirmed that tertiary amines, both aliphatic and aromatic, are not incorporated to the micellar pseudophase. The effect of the amine structure on the partition constant was analyzed through linear solvation free energy relationships (LSER) using solute parameters and compared with those obtained for alcohols. Hydrogen bond interactions with the AOT polar heads appear to be the main driving force for the distribution of amines between the organic and micellar pseudophases, whereas the size of the alkyl or aromatic group tends to hinder it.  相似文献   

10.
An ultra-sensitive and highly selective parathion methyl(PM) detection method by surface plasmon resonance(SPR) combined with molecularly imprinted films(MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip.Template PM molecules were quickly removed by an organic solution of acetonitrile/acetic acid(9:1,v/v), causing a shift of 0.58 in SPR angle. In the concentrations range of 10à13–10à10mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10à13mol/L. The selectivity of the thin PM-imprinted film against diuron,tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.  相似文献   

11.
Wei C  Zhou H  Zhou J 《Talanta》2011,83(5):721-1427
An ultrathin molecularly imprinted polymer film was anchored on an Au surface for fabricating a surface plasmon resonance sensor sensitive to acephate by a surface-bound photo-radical initiator. The polymerization in the presence of acephate resulted in a molecular-imprinted matrix for the enhanced binding of acephate. Analysis of the SPR wavenumber changes in the presence of different concentrations of acephate gave a calibration curve that included the ultrasensitive detection of acephate by the imprinted sites in the composite, Kass for the association of acephate to the imprinted sites, 7.7 × 1012 M−1. The imprinted ultrathin film revealed impressive selectivity. The selectivity efficiencies for acephate and other structurally related analogues were 1.0 and 0.11-0.37, respectively. Based on a signal to noise ratio of 3, the detection limits were 1.14 × 10−13 M for apple sample and 4.29 × 10−14 M for cole sample. The method showed good recoveries and precision for the apple and cole samples spiked with acephate solution. This suggests that a combination of SPR sensing with MIP film is a promising alternative method for the detection of organophosphate compounds.  相似文献   

12.
王青  朱红志  羊小海  王柯敏  杨丽娟  丁静 《化学学报》2012,70(13):1483-1487
报道了一种基于表面等离子体共振(SPR)生物传感器的高灵敏检测抗癌药物甲氧檗因的新方法. 分别在纳米金颗粒和金膜表面修饰富含腺嘌呤(A)的DNA链, 当存在甲氧檗因时, 由于一个甲氧檗因分子可与4个A碱基相结合, 从而使得修饰在纳米金颗粒和金膜表面的DNA形成稳定的双链结构, 进而将功能化纳米金颗粒捕获在金膜表面. 由于纳米金颗粒与金膜之间的电场耦合效应可增强SPR信号, 从而可实现对小分子甲氧檗因的高灵敏、特异性检测. 本方法的检测下限低至0.07 pmol/L, 相对比色法和荧光法而言, 降低了约5~6个数量级. 以4种药物(盐酸小檗碱、青霉素G、硫酸庆大霉素、5-氟尿嘧啶)作为对照考察了该传感器的选择性, 结果表明该传感器具有较好的选择性.  相似文献   

13.
J Dong  Y Peng  N Gao  J Bai  B Ning  M Liu  Z Gao 《The Analyst》2012,137(19):4571-4576
A new surface-initiated polymerization based on pasting the initiator on a sensor chip surface was applied to prepare a malachite green (MG) imprinted ultrathin film on a surface plasmon resonance (SPR) sensor. First, the initiator (2,2-azoisobutyronitrile) was pasted on the gold surface using polyvinyl chloride (PVC). The initiator-covered gold chip was then soaked in a pre-polymerization solution prepared by dissolving methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and MG (template) in DMSO in a weighing bottle. Finally, the weighing bottle was placed in a vacuum oven and thermal-initiated polymerization was conducted at 60 °C for 16 h. This method was simple and time-saving compared with the commonly used surface-initiated polymerization. More importantly, the molecularly imprinted polymer (MIP) film prepared using this method was much thicker than that of commonly used methods; the adsorption quantity was also much larger. The MIP modified SPR sensor showed high sensitivity and selectivity as well as good stability in detecting MG. The results suggest that the ultrathin MIP film prepared using the new method in this study is suitable to serve as the recognition element of the SPR sensor.  相似文献   

14.
We report on the spectroelectrochemical characterization of conducting polymer (CP) films, composed of alternating layers of poly(aniline) (PANI) and poly(acrylic acid) (PAA), deposited on ITO-coated, planar glass substrates using layer-by-layer self-assembly. Absorbance changes associated with voltammetrically induced redox changes in ultrathin films composed of only two bilayers (ITO/PANI/PAA/PANI/PAA) were monitored in real time using a unique multiple reflection, broadband attenuated total reflection (ATR) spectrometer. CP films in contact with pH 7 buffer undergo a single oxidation/reduction process, with ca. 12.5% of the aniline centers in the film being oxidized and reduced. The ATR spectra indicate that during an anodic sweep, the leucoemeraldine form of PANI in these films is oxidized to generate both the emeraldine and pernigraniline forms simultaneously. A comparison of the behavior observed during anodic and cathodic sweeps suggests that the rate of oxidation is limited by structural changes in the polymer film originating in electrostatic repulsion between positively charged PANI chains.  相似文献   

15.
A novel strategy was developed in order to prepare various micro/nanostructured polyanilines (PANI) on polymer substrates. The strategy involved two main steps, i.e., a grafting polymerization of acrylate acid (AA) onto the surface of a polypropylene (PP) film and subsequently an oxidative polymerization of aniline on the grafted surface. By tuning the conformation of the surface-grafted poly acrylate acid (PAA) brushes, as well as the ratio of AA to aniline, the shape of the PANIs fixated onto the surfaces of the polymer substrate could be controlled to go from spherical particles to nanowires and eventually to nanoribbons. In these structures, the PAA brushes not only acted as templates but also as dopants of PANI, and thereby, the nanostructured PANIs could be strongly bonded with the substrate. In addition, the surface of the PP films grafted with polyaniline nanowires and nanoribbons displayed superhydrophobicity with contact angles for water of approxiamtely 145 and 151 degrees , respectively.  相似文献   

16.
A novel dimethyl sulfoxide (DMSO) sensor using DMSO reductase and film electrodes was constructed. The Au and Ag electrodes were fabricated on slide glass by vacuum deposition and the application of a photolithographic technique. The micro-chamber (4 x 50 x 1 mm, volume 200 microl) was fabricated on a poly(dimethylsiloxane) (PDMS) polymer. The Pt electrode was implanted in a PDMS polymer. DMSO reductase was immobilized on a Au film electrode with bovine serum albumin (BSA)-glutaraldehyde. This sensor could determine DMSO in an unpurged aqueous solution with glucose oxidase (GOD) and catalase (CAT) for oxygen removal. The DMSO sensor showed a linear response within 1 mM DMSO with a correlation coefficient of 0.999. The detection limit was 200 microM (3sigma), and the sensitivity was 23.8 mA M(-1) cm(-2). The relative standard deviations at each concentration were within 3.6%.  相似文献   

17.
The electron transfer from aniline and its N-methyl as well as N-phenyl substituted derivatives (N-methylaniline, N,N-dimethylaniline, diphenylamine, triphenylamine) to parent solvent radical cations was studied by electron pulse radiolysis in n-butyl chloride solution. The ionization results in the case of aniline (ArNH2) and the secondary aromatic amines (Ar2NH, Ar(Me)NH) in the synchronous and direct formation of amine radical cations, as well as aminyl radicals, in comparable amounts. Subsequently, ArNH2*+ deprotonates in a delayed reaction with the present nucleophile Cl-, and forms further ArNH*. In contrast, tertiary aromatic amines such as triphenylamine and dimethylaniline yield primarily the corresponding amine radical cations Ar3N*+ or Ar(Me2)N*+, only. The persistent Ar3N*+ forms a charge transfer complex (dimer) with the parent amine molecule, whereas Ar(Me2)N*+ deprotonates to carbon-centered radicals Ar(Me)NCH2*.  相似文献   

18.
A pH-sensitive polymer interface has been used as a matrix for reversible immobilization of cytochrome c (Cyt c) on an Au surface through a dip-coating process. The pH-sensitive behavior of the polymer brush interface has been demonstrated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The reversible immobilization and electron-transfer properties of Cyt c have been investigated by in situ UV/Vis spectrophotometry and CV. The results have shown that the poly(acrylic acid) (PAA) brush acted as an excellent adsorption matrix and a good accelerant for the direct electron transfer of Cyt c, which gave redox peaks with a formal potential of 40 mV versus Ag/AgCl in pH 7.6 phosphate buffer solution. The average surface coverage of Cyt c on the PAA film was about 1.7 x 10(-10) mol cm(-2), indicating a multilayer of Cyt c. The electron-transfer rate constant was calculated to be around 0.19 s(-1) according to the CV experiments. The interface was subjected to in situ attenuated total internal reflection Fourier-transform infrared (ATR-FTIR) spectroscopic analysis, in order to further confirm the immobilization of Cyt c on the surface. This polymer-protein system may have potential applications in the design of biosensors, protein separation, interfacial engineering, biomimetics, and so on.  相似文献   

19.
20.
Porous sol–gel (PSG) film has been utilized as a template for the electrochemical polymerization of aniline in presence of poly(acrylic acid) (PAA). The presence of electroactive polyaniline (PAn)/PAA within the porous skeleton of the sol–gel films has been confirmed using cyclic voltammetry, UV–vis spectrometry and atomic force microscopic measurements. The densities and the sizes of the nanoelectrodes can be controlled easily using electrochemical methods. The conductive polymer “wires” of PAn/PAA formation in PSG matrix can behave as an ensemble of closely-spaced but isolated nanoelectrodes. Moreover, the nanoelectrode ensembles based on conductive PAn/PAA for glucose biosensing are fabricated by immobilization of glucose oxidase (GOx) and Nafion onto the surface of conductive polymer. Owing to the biocompatibility of PSG and electro-activity of PAn/PAA at neutral pH regions, the glucose biosensor shows excellent characteristics and performance, such as low detection limit and fast response time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号