首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Open-sided draft tubes provide an optimal gas distribution through a cross flow pattern between the spout and the annulus in conical spouted beds.The design,optimization,control,and scale-up of the spouted beds require precise information on operating and peak pressure drops.In this study,a multi-layer perceptron(MLP)neural network was employed for accurate prediction of these hydrodynamic characteristics.A relatively huge number of experiments were accomplished and the most influential dimensionless groups were extracted using the Buckingham-pi theorem.Then,the dimensionless groups were used for developing the MLP model for simultaneous estimation of operating and peak pressure drops.The iterative constructive technique confirmed that 4-14-2 is the best structure for the MLP model in terms of absolute average relative deviation(AARD%),mean square error(MSE),and regression coefficient(R2).The developed MLP approach has an excellent capacity to predict the transformed operating(MSE=0.00039,AARD%=1.30,and R2=0.76099)and peak(MSE=0.22933,AARD%=11.88,and R2=0.89867)pressure drops.  相似文献   

2.
Effective enhanced model for a large deformable soft pneumatic actuator   总被引:1,自引:0,他引:1  
Soft pneumatic actuators have been widely used for implementing sophisticated and dexterous movements,due to numerous fascinating features compared with their rigid counterparts.Relatively speaking,modeling and analysis of an entire soft pneumatic actuator considering contact interaction between two adjacent air chambers is extremely rare,which is exactly what we are particularly interested in.Therefore,in order to establish an accurate mechanical model and analyze the overall configuration and stress distribution for the soft pneumatic actuator with large deflection,we consider the contact interaction of soft materials rather than hard materials,to produce an effective enhanced model for soft contact of a large deformable pneumatic actuator.In this article,a multiple-point contact approach is developed to circumvent the mutual penetration problem between adjacent air chambers of the soft actuator that occurs with the single-point contact approach employed in linear elastic rigid materials.In contrast to the previous simplified rod-based model that did not focus on contact interaction which was adopted to clarify the entire deformation of the actuator,the present model not only elaborates nonlinear large deformation and overall configuration variations,but also accurately delineates stress distribution law inside the chamber structure and the stress concentration phenomenon.By means of a corresponding static experiment,a comparison of the simulation results with experimental data validates the effectiveness and accuracy of this model employing a multiple-point contact approach.Excellent simulation of the actual bending deformation of the soft actuator is obtained,while mutual penetration is successfully circumvented,whereas the model with single-point contact cannot achieve those goals.Finally,as compared with the rod-based model,the results obtained using the proposed model are more consistent with experimental data,and simulation precision is improved.  相似文献   

3.
An axially variable-length solid element with eight nodes is proposed by integrating the arbitrary Lagrangian-Eulerian (ALE) formulation and the absolute nodal coordinate formulation (ANCF). In addition to the nodal positions and slopes of eight nodes, two material coordinates in the axial direction are used as the generalized coordinates. As a consequence, the nodes in the ALE-ANCF are not associated with any specific material points and the axial length of the solid element can be varied over time. These two material coordinates give rise to a variable mass matrix and an additional inertial force vector. Computationally efficient formulae of the additional inertial forces and elastic forces, as well as their Jacobians, are also derived. The dynamic equation of a flexible multibody system (FMBS) with variable-length bodies is presented. The maximum and minimum lengths of the boundary elements of an FMBS have to be appropriately defined to ensure accuracy and non-singularity when solving the dynamic equation. Three numerical examples of static and dynamic problems are given to validate the variable-length solid elements of ALE-ANCF and show their capability.  相似文献   

4.
Urban road dust was collected from Vellore City,Tamil Nadu,India,and analyzed.Scanning electron microscopy(SEM)was used to examine road dust from nine sampling locations in the study region.SEM image analysis was used to identify various shape factors of collected dust particles.The equivalent spherical diameter of most particles was between 10μm and 30μm.Fine particles had greater concentrations at locations with higher traffic flow.Particles were categorized into four classes based on their shape factors,viz.,spherical,mineral,elongated,or irregular.Spherical particles had the smallest mean equivalent diameter(1.95μm)and mineral particles had the largest diameter(33.3μm).Spherical particles made up the smallest portion of road dust(0-12%)in the study region and mineral particles made up the largest(45-65%).Elongated and irregular particles,each made up 23-30%of road dust.Electron dispersive X-ray spectroscopy analysis was used to identify the elemental composition of dust particles.Spherical particles were mostly from combustion sources and mineral particles were largely of crustal origin.No individual source was found for irregular and elongated particles.Biological debris was the major source of irregular particles.  相似文献   

5.
The bimodulus material is a classical model to describe the elastic behavior of materials with tension-compression asymmetry.Due to the inherently nonlinear properties of bimodular materials,traditional iteration methods suffer from low convergence efficiency and poor adaptability for large-scale structures in engineering.In this paper,a novel 3D algorithm is established by complementing the three shear moduli of the constitutive equation in principal stress coordinates.In contrast to the existing 3D shear modulus constructed based on experience,in this paper the shear modulus is derived theoretically through a limit process.Then,a theoretically self-consistent complemented algorithm is established and implemented in ABAQUS via UMAT;its good stability and convergence efficiency are verified by using benchmark examples.Numerical analysis shows that the calculation error for bimodulus structures using the traditional linear elastic theory is large,which is not in line with reality.  相似文献   

6.
Parametric resonance is one of the most important issues in the study of dynamical behavior of structures. In this paper, dynamic instability of a moderately thick rectangular plate on an elastic foundation is investigated in the case of parametric and external resonances due to periodic passage of moving masses. The governing coupled partial differential equations (PDEs) of the system, with consideration of the first-order shear deformation theory (FSDT) or Mindlin plate theory, are presented and they are reduced to a set of ordinary differential equations (ODEs) with time-dependent coefficients using the Galerkin procedure. All inertial components of the moving masses are adopted in the dynamical formulation. Instability survey is carried out for three different loading trajectories considerably interested in many practical applications of the issue, i.e. rectilinear, diagonal and orbiting trajectories. In order to analyze the resonance conditions, the incremental harmonic balance (IHB) method is introduced to calculate instability boundaries, as well as external resonance curves in parameters plane. A comprehensive study is done to assess effects of thickness ratio and foundation stiffness on the resonance conditions. It is found that an increase in the plate's thickness ratio leads to a reduction in values of critical parameters. Moreover, it is observed that in creasing the foundation stiffness moves the in stability regions and resona nee curves to higher frequencies of the moving masses and also leads to further stability of the parametrically excited system at lower frequencies. Time response simulations done via Runge-Kutta method confirmed the results predicted by IHB method.  相似文献   

7.
Flow around a real-life underwater vehicle often happens at a high Reynolds number with flow structures at different scales from the boundary layer around a blade to that around the hull. This poses a great challenge for large-eddy simulation of an underwater vehicle aiming at resolving all relevant flow scales. In this work, we propose to model the hull with appendages using the immersed boundary method, and model the propeller using the actuator disk model without resolving the geometry of the blade. The proposed method is then applied to simulate the flow around Defense Advanced Research Projects Agency(DARPA) suboff. An overall acceptable agreement is obtained for the pressure and friction coefficients. Complex flow features are observed in the near wake of suboff. In the far wake, the core region is featured by a jet because of the actuator disk, surrounded by an annular region with velocity deficit due to the body of suboff.  相似文献   

8.
Several studies indicate that Eringen’s nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equati...  相似文献   

9.
The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse particle shape(i.e.,roundness)on the macroscopic and microscopic shear behaviours of cohesionless mixed soils with various fines contents(FCs)was investigated via the discrete element method in this study.The shapes of coarse particles were formed using the rotation-invariant spherical harmonic method proposed by previous investigators.An equation was proposed to predict the initial void ratios of samples in this study.A decrease in the roundness of coarse particles can increase the peak friction angle(FC≤40%)and critical friction angle(FC≤30%).As the roundness of coarse particles decreases,the peak dilatancy angle initially increases and then decreases(FC≤20%).Furthermore,it was found that the roundness of coarse particles hardly affects the classification of cohesionless mixed soils,as determined by probing the percentage contributions of coarse-coarse,coarse-fine,and fine-fine contacts.When cohesionless mixed soils change from an underfilled structure to an interactive-underfilled structure at the critical state,the main forms of coarse-coarse contacts were discovered.Additionally,the force-fabric anisotropy mechanisms of the influences of the roundness and rolling resistance coefficient of coarse particles on the shear strengths of cohesionless mixed soils were found to be different.  相似文献   

10.
Group C particles are often regarded as non-fluidizable but have proven to effectively fluidize with nanoparticle addition,which results in small bubbles and a high gas holdup in the dense phase during the experiments.Group C+particles provide an increased surface area for gas-solid contact and improve the reaction performance,especially for gas-phase catalytic reactions.On the basis of a previous study of the ozone decomposition reaction using Group C+particles,a two-phase model was used to evaluate the reactor contact efficiency,and was used to compare the partial oxidation performance of the n-butane to maleic anhydride reaction in fluidized-bed catalytic reactors of Group C+and Group A particles.The reactor with Group C+particles achieved a higher n-butane conversion and MAN yield compared with that using Group A particles,based on the identical catalyst quantity or on the same gas residence time.Therefore,the reactor with Group C+particles can achieve the same reaction conversion and yield with fewer catalysts or a smaller reactor size,or both.Therefore,the fluidized bed catalytic reactor of Group C+particles is expected to be of major significance in industrial processes,especially for gas-phase catalytic reactions.  相似文献   

11.
对融化巧克力浆料进行了实验研究,揭示了其假塑性和触变性.并根据实验结果得到了融化巧克力浆料的全流变本构方程.  相似文献   

12.
In order to understand the heat transfer characteristics of molten salt and testify the validity of the well-known empirical convective heat transfer correlations, experimental study on transition convective heat transfer with molten salt in a circular tube was conducted. Molten salt circulations were realized and operated in a specially designed system over 1000 h. The average forced convective heat transfer coefficients of molten salt were determined by least-squares method based on the measured data of flow rates and temperatures. Finally, a heat transfer correlation of transition flow with molten salt in a circular tube was obtained and good agreement was observed between the experimental data of molten salt and the well-known correlations presented by Hausen and Gnielinski, respectively.  相似文献   

13.
为探究高温熔融铝液与水相互作用的爆炸机理,设计了一套高温熔融铝液与水接触爆炸实验测试系统,应用红外热像仪、高速摄像机、压力传感器等设备监测高温熔融铝液与水相互作用过程,并对高温熔融铝液与水接触爆炸过程的能量转化规律进行了分析.实验结果表明:高温熔融铝液与水接触瞬间发生膜态沸腾,水剧烈汽化产生的冲击在水中产生扰动并快速扩...  相似文献   

14.
This article presents the development and validation of the Superquadric Discrete Element Method (SuperDEM) for non-spherical particle simulation using a superquadric particle method in open-source CFD suite MFiX. A superquadric particle–particle contact algorithm with accelerating and stabilizing strategy was developed. A superquadric particle–arbitrary wall contact algorithm was developed, which enables the simulation in complex geometry. The solver was validated by comparing with experimental data generated in this study or available in the literature. Tests include cylinder contacting with a wall, static packing of M&M chocolate candies in a cylindrical container, static packing of cylinders in a cylindrical container, dynamic angle of repose of cylinders in a rotating drum, and discharging of chocolate candies from a hopper. Besides, MPI parallelization of the solver was implemented and the parallel performance of the solver using MPI was assessed through large-scale simulations of 1 million, 10 million, and 100 million particles on up to 6800 cores, which demonstrates that the SuperDEM solver has great potential for industrial-scale systems simulation.  相似文献   

15.
肖文甲  许宇翔  宋立军 《力学学报》2021,53(12):3252-3262
激光增材制造(laser additive manufacturing, LAM)技术极适合复杂整体构件的近净成形和高附值损伤件的快速修复. 然而, 激光增材制造熔池内部复杂的动态凝固过程显著影响成形件的终态组织, 进而制约其服役性能. 本文针对激光直接能量沉积(direct energy deposition by laser, DED-L) Inconel 718过程, 构建宏观传热传质与多相场耦合的多尺度数学模型, 解决了熔池宏?微观温度场的直接耦合, 并基于MPI并行程序设计实现了熔池二维的全域定量模拟, 研究了凝固过程中的晶粒演变过程. 结果表明, 模拟的熔池尺寸、凝固界面与实验结果吻合较好. 熔池凝固界面形态和晶体择优取向是影响晶粒演变的重要因素. 在熔池横截面上, 凝固过程主要受温度梯度方向的驱使, 取向与温度梯度方向夹角越小的晶粒占优生长. 在纵截面上, 晶粒的生长表现出弯曲生长以及“上三角”的晶粒特征, 温度梯度方向的渐变导致了晶粒弯曲, 相邻晶粒的竞争行为决定了晶粒形貌. 本文阐明了金属激光增材制造晶粒演变的机理, 有助于厘清增材制造热物理、化学、冶金过程, 为凝固组织的预测和调控提供理论指导. 此外, 该多尺度数学模型也适用于其他金属材料的激光增材制造过程.   相似文献   

16.
The effects of nonlinear thermophysical properties on thermal and flow fields of the molten thin layer produced by contact melting are investigated. The molten layer is assumed to be a non-Newtonian fluid which has temperature-dependent viscosity and thermal conductivity. Heat transfer to solid and temperature field in solid with temperature-dependent conductivity are obtained. Choosing the heating surface of parabolic shape significantly reduce calculations, since closed-form solutions are obtained. Closed-form solutions for velocity, temperature, pressure, and thickness of the molten layer, and criterions to indicate the importance of taking into account the effects of nonlinear properties are provided. Received on 10 January 1997  相似文献   

17.
We studied the sharkskin melt fracture phenomena of polybutadiene (PBD), which exhibits similar flow properties and instabilities to linear low density polyethylene (LLDPE). The advantages of using PBD are that it exhibits larger distortions and slower development due to its high viscosity. By using a video camera with close-up lenses focused at the die exit, we observed the development of sharkskin in profile. It was shown that the sharkskin melt fracture develops with the cohesive failure at the die exit due to a peeling of surface layers as described by Howell and Benbow (1962). Oddly enough, this mechanism is similar to that proposed by Ovaici et al. (1998) for the extrusion of chocolate. A soap solution coating around the die exit to induce a slippery interface eliminated the sharkskin fracture, similar in the effect of fluoro-elastomer coating with LLDPE. Based on our visual observations, we qualitatively modeled the sharkskin fracture by modifying Cogswell‘s (1977) idea on exit stretching at the die exit and the force balance of Ovaici et al. on the ring formation of the chocolate extrusion. Received: 22 May 1998 Accepted: 31 August 1998  相似文献   

18.
镁液和铝液的真空低压铸造过程的模拟试验研究   总被引:1,自引:0,他引:1  
张勇  王有喜  王超 《力学季刊》2011,32(1):62-67
本文利用真空低压铸造工艺来制备镁合金和铝合金试样,选择该铸造工艺过程为模拟对象,根据相似原理,在有机玻璃模型中用液体作为流体,对金属镁液和铝液的真窄低压铸造过程进行了模拟试验研究.试验表明,在利用真空低压铸造工艺来制备镁合金和铝合金试样的过程中,原型的渗流液面是以平面沿铅垂方向向上推进的,位移和时间的关系满足四次方根规...  相似文献   

19.
The present numerical study has dealt with the enhancement of latent heat Release by using plate type fins mounted on the vertical cooling surface in the rectangular vessel packed with molten salt as a latent heat storage material. It was found that the fin thickness and pitch exerted an influence on solidification heat transfer in a liquid layer of a nitric molten salt. The numerical results elucidated the flow pattern, velocity profile and heat transfer rate in the melted liquid layer.  相似文献   

20.
In this study, numerical methods are developed to simulate thermomechanical processes, taking into account both the fluid flows in the molten pool and the deformations of the solid parts. The methods are based on a new strategy of solid/fluid coupling. They allow to simulate the formation of the molten pool by taking into account the fluid flows through both effects of the surface tension (“curvature effect” and “Marangoni effect”) and the buoyancy. An ALE approach is used to follow the evolution of the free surface. The effects of the deformations in the base metal on the fluid flows in the molten pool (solid/fluid interaction) is ensured by imposing the velocities of the solid nodes during the thermo-fluid simulation. As an application, a thermo-fluid-mechanical simulation of laser welding is carried out. It is found that the solid/fluid interaction has a minor effect on simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号