首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption behavior of highly charged cationic polyelectrolytes onto porous substrates is electrostatic in nature and has been shown to be highly dependent on the polyelectrolyte properties. Copolymers of acrylamide (AM) and diallyldimethylammonium chloride (DADMAC) were synthesized to have a range of macromolecular properties (i.e., charge density and molecular mass). Traditional titration methods have been complemented by fluorescence labeling techniques that were developed to directly observe the extent that fluorescently labeled poly(AM- co-DADMAC) adsorbs into the pore structure of a cellulosic substrate. Although contributing to the electrostatic driving force, the charge density acts to limit adsorption to the outermost surface under electrolyte-free conditions. However, adsorption into the pores can occur if both the molecular mass and charge density of poly(AM- co-DADMAC) are sufficiently low. Adsorption initially increases as the electrolyte concentration is increased. However, the electrostatic persistence length of poly(AM- co-DADMAC) restricts the polyelectrolyte from entering the pores. Therefore, changes in the adsorption behavior at moderate electrolyte concentrations have been attributed to swelling of the polyelectrolyte layer at the fiber exterior. The adsorption behavior changes again at high electrolyte concentrations such that poly(AM- co-DADMAC) could adsorb into the pore structure. This occurred when the electrolyte concentration was sufficient to screen the electrostatic persistence length of poly(AM- co-DADMAC), provided that the entropic driving force for adsorption still existed. It is suggested that adsorption into the pore structure is a kinetic process that is governed by localized electrostatic interactions between poly(AM- co-DADMAC) and the charges located within the pores.  相似文献   

2.
The behavior of highly charged short rodlike polyelectrolytes near oppositely charged planar surfaces is investigated by means of Monte Carlo simulations. A detailed microstructural study, including monomer and fluid charge distributions and chain orientation, is provided. The influence of chain length, substrate's surface-charge density, and image forces is considered. Due to the lower chain entropy (compared to flexible chains), our simulation data show that rodlike polyelectrolytes can, in general, better adsorb than flexible ones do. Nonetheless, at low substrate-dielectric constant, it is found that repulsive image forces tend to significantly reduce this discrepancy.  相似文献   

3.
The adsorption of a long weakly charged flexible polyelectrolyte in a salt solution onto an oppositely charged spherical surface is investigated. An analytical solution for Green's function is derived, which is valid for any sphere radius and consistently recovers the result of a planar surface in the limit of large sphere radii, by substituting the Debye-Hückel potential via the Hulthén potential. Expressions for critical quantities like the critical radius and the critical surface charge density are provided. In particular, we find a universal critical line for the sphere radius as a function of the screening length separating adsorbed from desorbed states. Moreover, results for the monomer density distribution, adsorbed layer thickness, and the radius of gyration are presented. A comparison of our theoretical results with experiments and computer simulations yields remarkably good agreement.  相似文献   

4.
We study phase separation in symmetric solutions of weakly charged flexible chains of opposite sign. Precipitation is caused by effective attractions due to charge fluctuations and by short-range attractions between monomers. The contribution from charge fluctuations is computed within the random phase approximation (RPA), which takes into account the connectivity of charges in the polyions. The impenetrability of the ions is accounted for by using a modified Coulomb potential in the RPA. In good solvent conditions the precipitate monotonically swells and eventually dissolves upon addition of salt. However, near the theta-solvent condition, but still in the good solvent, the precipitate can be stable at any salt concentration. Moreover, the density of the precipitate after initial decrease can increase with addition of salt. This effect is a result of redistribution of salt between the precipitate and the supernatant, which is due to an interplay of electrostatic and hardcore interactions. For not too weakly charged polyions the precipitate properties become strongly dependent on temperature even in good solvent conditions.  相似文献   

5.
The adsorption behavior of a low charge density cationic polyelectrolyte to cellulosic fibers has been studied. Cationic dextran served as a model polyelectrolyte, as it can be prepared over a range in molecular mass and charge density. The adsorption behavior of the cationic dextran was measured in electrolyte-free conditions using polyelectrolyte titration techniques. By fluorescent labeling the cationic dextran, the extent to which adsorption occurs inside the porous structure was further determined by fluorescent confocal laser scanning microscopy. Cationic dextran having a sufficiently low charge density adsorbed into the pores, although the extent the cationic dextran adsorbed was governed by the molecular mass. The adsorption behavior of the cationic dextran was also studied in various electrolyte concentrations. The adsorbed mass monotonically decreased with increasing electrolyte, as the electrostatic interaction with the substrate was more effectively screened. This behavior also suggests that the interactions between adsorbed polyelectrolyte chains, i.e. lateral correlation effects, are negligible for low charge density polyelectrolytes. Finally, the effect of having a preadsorbed layer of cationic dextran on the adsorption behavior was determined in electrolyte-free conditions using fluorescent double staining techniques. The preadsorbed cationic dextran had almost no effect on the adsorption of low molecular mass fractions. Low molecular mass fractions directly adsorbed into the pore structure, as opposed to adsorbing to a free surface and diffusing into the pores. It was also shown that cationic dextran can be selectively adsorbed to different locations, such that the surface of a porous substrate can be treated uniquely from the bulk.  相似文献   

6.
A triethyl-ammonium functionalized 4-nitro-4′-alkoxy azobenzene mesogen with a 10-carbon spacer (azo10Q, a ‘surfactomesogen’) was complexed in equimolar proportions to a variety of oppositely charged polyelectrolytes, and studied by differential scanning calorimetry (DSC), polarizing optical microscopy, and X-ray diffraction. The complexation generates a single-layer smectic A mesophase over a very wide temperature range from a surfactomesogen that, alone, melts directly to the isotropic phase. The clearing temperatures, ranging from 130 to 190 °C and generally higher than the melting point of azo10Q, are dependent on the nature of the polyelectrolyte as well as its molecular weight. In contrast, a prominent glass transition near ambient temperature appears to be independent of molecular weight, but varies somewhat with the type of polyelectrolyte. A second Tg-like transition of much lower intensity is detectable at higher temperatures (generally above 100 °C), and, with literature support, is tentatively attributed to nanophase separation involving sublayer planes in the lamellar packing structure. A series of nonequimolar complexes was also investigated, and it was found that, with decreasing azo10Q content, the clearing temperature viewed by DSC decreases rapidly in intensity (and somewhat in temperature) and then disappears although birefringence remains, whereas the lower glass transition increases rapidly in temperature to finally merge with the upper one. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3421–3431, 2005  相似文献   

7.
Oppositely charged polyelectrolytes interact in solution, forming polyelectrolyte complexes, which often appear as gel-like precipitates. This kind of complex formation was studied by means of calorimetric and rheological measurements. The enthalpy effects, though being fairly small, give some information about the binding strength of counterions to the macroion. We studied the system poly(p-styrene sulfonate)/poly(trimethylammonium-2-ethyl methacrylate) (PSS-PTMA), varying systematically the low molar mass counterions of PSS. In every case, the maximum of enthalpy was found around a 1:1 (mol:mol monomer units) composition of the complexes, with the shape of enthalpy versus composition-curve indicating a stoichiometric interaction. The maximum enthalpy decreased with increasing atomic mass of the counterion when the alkaline metal salts of PSS were used and no change was made on the side of the cationic polyelectrolyte. The salts of the alkaline earth metals gave a distinctly higher enthalpy. On the contrary, viscosity measurements showed a very broad minimum as a function of composition, indicating that the formation of non-stoichiometric complexes is also occurring. The conclusion of these observations is that the complex formation is stoichiometric with respect to the monomeric units, but not necessarily stoichiometric with respect to the entire macromolecules.  相似文献   

8.
A family of cationic polyelectrolytes possessing defined chain lengths, narrow chain length distributions, uniform charge density, but substituents of different hydrophilicity at the quaternary ammonium group served as model compounds for adsorption studies. These studies quantitatively revealed that polymer characteristics and electrostatic parameters affect the adsorption behavior on oppositely charged porous column materials. The presence of electrostatic exclusion, in addition to size exclusion, was proved comparing molecular, electrostatic and geometrical parameters. The dominance of electrostatic effects could be concluded evaluating the relation between molecular and electrostatic dimensions. The results provide a contribution how to estimate the threshold for electrostatic exclusion from pores as a function of dimensions and experimental conditions.  相似文献   

9.
Polyelectrolyte-colloid coacervation could be viewed as a sub-category of complex coacervation, but is unique in (1) retaining the structure and properties of the colloid, and (2) reducing the heterogeneity and configurational complexity of polyelectrolyte-polyelectrolyte (PE-PE) systems. Interest in protein-polyelectrolyte coacervates arises from preservation of biofunctionality; in addition, the geometric and charge isotropy of micelles allows for better comparison with theory, taking into account the central role of colloid charge density. In the context of these two systems, we describe critical conditions for complex formation and for coacervation with regard to colloid and polyelectrolyte charge densities, ionic strength, PE molecular weight (MW), and stoichiometry; and effects of temperature and shear, which are unique to the PE-micelle systems. The coacervation process is discussed in terms of theoretical treatments and models, as supported by experimental findings. We point out how soluble aggregates, subject to various equilibria and disproportionation effects, can self-assemble leading to heterogeneity in macroscopically homogeneous coacervates, on multiple length scales.  相似文献   

10.
Complexation in solutions of strongly charged polyelectrolytes and diblock copolymers composed of oppositely charged and neutral blocks were studied via the molecular dynamics method. Stoichiometric micellar complexes formed in a dilute solution represent cylindrical brushes whose conformation is determined by the linear charge density on the polyelectrolyte and by temperature. As the concentration of macromolecules increases, the orientational ordering of anisotropic ionic micelles takes place. The complexation can induce the stiffening of the polyelectrolyte chain.  相似文献   

11.
Russian Chemical Bulletin - For cationic surfactant 4-aza-1-dodecyl-1-azoniabicyclo[2.2.2]octane bromide (DABCO-16), a significant decrease in the critical micelle concentration (CMC) is shown in...  相似文献   

12.
The influence of sodium dodecyl sulfate (SDS) on the interfacial behavior of two amphiphilic polyelectrolytes, which are copolymers of the cationic monomers triethyl(vinylbenzyl)ammonium chloride and dimethyldodecyl(vinylbenzyl)ammonium chloride, at the silica-aqueous interface was studied. The fraction of amphiphilic monomers was varied, where 0DT, 40DT, and 80DT contained 0, 40, and 80 mol % monomers with dodecyl side chains, respectively. We used in situ ellipsometry to follow the kinetics of adsorption, in terms of adsorbed amount and adsorbed layer thickness, as well as the response of the adsorbed layers to changes in ionic strength and surfactant concentration. Different results were obtained when surfactant was added to the preadsorbed layers compared to the cases when complexes were preformed in the solution prior to the adsorption. In the whole range of concentrations studied, SDS interacts with 40DT and 80DT noncooperatively, whereas for 0DT cooperativity of binding is observed. The amount adsorbed increased significantly as the SDS concentration was close to the cmc. At high SDS concentrations, a lowering of the layer density was observed. For the amphiphilic polyelectrolytes, 40 DT and 80DT, no desorption from the interface was detected for the range of SDS concentrations studied, while 0DT features a maximum in adsorbed amount at concentrations close to the cmc of SDS. Adsorption of 40DT and 80DT from their mixtures with SDS is found to be path dependent with respect to the variation in SDS concentration, where the reversibility decreases with increasing SDS concentration above the expected charge neutralization point. The coadsorption of 80DT and SDS is highly irreversible with respect to changes in the ionic strength within the time scale of the experiment. In this study, we attempt to illustrate both general mechanisms and specific effects. With regard to the general behavior, it is important to note the charge regulation of both the silica surfaces and the polyion/surfactant complexes; an interplay between the two charge-regulating effects is the key to understanding our observations.  相似文献   

13.
Using the ground state dominance approximation and a variational theory, we study the encapsulation of a polyelectrolyte chain by an oppositely charged spherical surface. The electrostatic attraction between the polyelectrolyte and the surface and the entropy loss of the encapsulated polyelectrolyte chain dictate the optimum conditions for encapsulation. Two scenarios of encapsulation are identified: entropy-dominated and adsorption-dominated encapsulation. In the entropy-dominated encapsulation regime, the polyelectrolyte chain is delocalized, and the optimum radius of the encapsulating sphere decreases with increasing the attraction. In the adsorption-dominated encapsulation regime, the polyelectrolyte chain is strongly localized near the surface, and the optimum radius increases with increasing the attraction. After identifying a universal encapsulation parameter, the dependencies of the optimum radius on the salt concentration, surface charge density, polymer charge density, and polymer length are explored.  相似文献   

14.
Polyelectrolyte complex formation has been studied between oppositely charged polyelectrolytes, e.g., polyethylene-imine, polymethacrylic acid, and methacrylic acid–methacrylamide copolymer. Formation of complexes could be shown through several experimental techniques, e.g., viscometry, conductometry, potentiometry, and IR spectra. It is suggested that these complexes are perhaps formed as a result of electrostatic cooperative interaction and a “ladder-like” interaction is likely to be more favorable.  相似文献   

15.
It is studied by spectrofluorimetry the association of ionized cationic micelles (cetyltrimethylammonium bromide, CTAB) with oppositely charged polyelectrolyte [sodium poly(styrenesulfonate), PSSNa]. CTAB provokes a change in the fluorescence intensity emitted by PSSNa. The investigated surfactants form micelle-like aggregates before critical micellar concentration (CMC). Two approaches (binding and partition equilibrium) are used to obtain the association constant, KA, number of CTAB molecules in a binding site, N, and apparent partition coefficient, Γ. Analysis of the parameters as a function of polymer concentration and ionic strength μ is performed. The effect of μ shows an enhancement in association as μ decreases. Furthermore as CMC decreases with μ, experiments have to be performed at rather different CMCs. This causes KA and Γ to increase with μ. The adsorption of polyelectrolyte on the micelle is also studied at the greatest μ using high-performance liquid chromatography (size-exclusion) for the first time, obtaining results similar to those found using spectrofluorimetry.  相似文献   

16.
A novel biosensing interfacial design strategy has been produced by the alternate adsorption of the oppositely charged polyelectrolytes. A quartz-crystal microbalance (QCM) as a model transducer was modified by use of mercaptoacetic acid (MAA) self-assembled monolayer (SAM) and the adsorption multilayers of the oppositely charged polyelectrolytes. MAA-SAM was first applied to the gold electrode surface of the crystal, and the positively charged chitosan was used as a double-sided linker to attach the negatively charged alginate-HSA antibodies to the negatively charged MAA-SAM layer. The assembly process and conditions were studied using the real-time output device and the surface topologies of the resulting crystals were characterized by atomic force microscopy (AFM) imaging. It is discovered that the optimal pH of immobilizing antibodies was 7.2 and the suited dilution ratio of antibodies was 10:30. The proposed immunosensor in optimal conditions has a linear detection range of 12.3-184.5 μg/mL for HSA detection. Comparing with the direct immobilization method of antibodies, the immunosensor with the proposed immobilization procedure shows some advantages, such as improved sensitivity due to the well-retained antibody activity and the significantly extended detection range. In particular, the regeneration of the developed immunosensor was simple and fast. Analytical results indicate that the developed immobilization procedure is a promising alternative for the immobilization of biorecognition element on the electrode surface.  相似文献   

17.
One of the most important characteristics of the polyelectrolyte/surfactant interaction is the binding isotherm of the surfactant because it provides basic thermodynamic information about the binding mechanism. However, the amount of the surfactant bound to the polymer may crucially affect the surface properties of these systems via changing the thermodynamic activity of the components. Therefore, a knowledge of the binding isotherms can also be useful in tuning the efficiency of commercial products. However, the determination of these isotherms is still subject to significant experimental difficulties. In this letter, we offer a novel method for the estimation of binding isotherms based on electrokinetic measurements. The technique provides a simple and quick way to estimate the bound amount of surfactant that might be useful in both fundamental and industrial research. In principle, the proposed method could also be extended to the determination of the binding isotherms of small ligands on biomacromolecules.  相似文献   

18.
The coadsorption of a positively charged polyelectrolyte (with 10% of the segments carrying a permanent positive charge, AM-MAPTAC-10) and an anionic surfactant (sodium dodecyl sulfate, SDS) on silica and glass surfaces has been investigated using optical reflectometry and a noninterferometric surface force technique. This is a selective coadsorption system in the sense that the polyelectrolyte does adsorb to the surface in the absence of surfactant, whereas the surfactant does not adsorb in the absence ofpolyelectrolyte. It is found that the total adsorbed amount goes through a maximum when the SDS concentration is increased. Maximum adsorption is found when the polyelectrolyte/surfactant complexes formed in bulk solution are close to the charge neutralization point. Some adsorption does occur also when SDS is present in significant excess. The force measured between AM-MAPTAC-10-coated surfaces on approach in the absence of SDS is dominated at long range by an electrostatic double-layer force. Yet, layers formed by coadsorption from solutions containing both polyelectrolyte and surfactant generate long-range forces of an electrosteric nature. On separation, adhesive interactions are found only when the adsorbed amount is low, i.e., in the absence of SDS and in a large excess of SDS. The final state of the adsorbed layer is found to be nonhysteretic, i.e., independent of the history of the system. The conditions for formation of long-lived trapped adsorption states from mixed polymer-surfactant solutions are discussed.  相似文献   

19.
Adsorption of polyelectrolytes has been studied employing monolayers of ionic amphiphiles at the air water interface as model surfaces. The adsorption of polyelectrolytes from a solution brought into contact with the amphiphile monolayer results in changes of the monolayer structure and properties. Monitoring these changes can be done by recording the changes in surface pressure. The kinetics of the adsorption depends strongly on the nature of the polyelectrolyte. Depending on the structure of the polyelectrolyte a purely diffusion controlled adsorption or a sequence of diffusion controlled adsorption and ordering processes have been identified to determine the kinetics. The influence of the molecular architecture on the polyelectrolyte adsorption has been further studied employing linear and star shaped poly(acrylic acid) and poly(N-propyl-4-vinyl pyridinium bromides), respectively. An unexpected behavior with an induction period in the adsorption kinetics of both polymers has been found. Furthermore, the degree of branching has only very minor effects on the adsorption kinetics.  相似文献   

20.
Strongly adsorbing hydrophobic cationic polyelectrolyte, Eudragit RS, containing approximately 2.5 mol% of pendent hydrophilic trimethylammonium (TMA) groups irreversibly adsorbs from its methylene chloride (MCl) solution at the MCl/water interface and forms solid-like adsorption layers (ALs). Submitted to periodic dilational deformations with the standard radial frequency omega(0)=0.63 rad/s, these ALs exhibit relatively high dilational storage modulus E' approximately 20 mN/m and practically zero loss modulus E' at the bulk concentration C(Eud)=4 x 10(-3)g/L. The frequency scanning of these ALs in the diapason omega=0.01-0.63rad/s and the approximation of the experimental dependences E'(omega) and E'(omega) by two relaxation times rheological model makes it possible to estimate the crossing frequency of these ALs determined from the condition E'(omega(c))=E'(omega(c)) as omega(c) approximately 5 x 10(-4)rad/s. Upon dissolving the hydrophilic anionic polyelectrolyte, chitosan sulfate (ChS), in the water phase (C(ChS)=3 x 10(-2)g/L) the electrostatic interpolyelectrolyte complexes form at the MCl/water interface. The elasticity moduli E' and E' of these mixed AL did not undergo remarkable variations, but the crossing frequency is sharply increased by approximately 10 times becoming equal to omega(c) congruent with 3 x 10(-3)rad/s. The increase of omega(c) certifies for the liquefaction of mixed Eudragit RS/ChS adsorption layers. A remarkable decrease of the storage modulus down to E'=8 mN/m and simultaneous increase of the crossing frequency up to omega(c) congruent with 10(-2)rad/s occurs upon increasing the concentrations of both components, Eudragit RS and ChS, up to 0.1g/L. The liquefaction effect in the mixed ALs of oppositely charged polyelectrolytes was explained on the basis of the proposed relaxation mechanism. The effect of the liquefaction of adsorption layers of strongly adsorbing hydrophobic polyelectrolytes by formation of interpolyelectrolyte complexes with hydrophilic polyelectrolytes must be taken into account in the production of nano-capsules and nano-fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号