首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have investigated the stability and catalytic activity of epitaxial overlayers of rhodium on Au(111) and Pd(111). Both surfaces show a strong affinity for hydrogen. We have calculated the energy of adsorption both for a strongly and a more weakly adsorbed species; the latter is the intermediate in the hydrogen evolution reaction. Both the energy of activation for hydrogen adsorption (Volmer reaction) and hydrogen recombination (Tafel reaction) are very low, suggesting that these overlayers are excellent catalysts.  相似文献   

2.
We investigate hydrogen evolution on plain and nanostructured electrodes with a theory developed by us. On electrodes involving transition metals the most strongly adsorbed hydrogen is often only a spectator, while the reaction proceeds via a weakly adsorbed species. For Pt(111) the isotherms for both species are calculated. We explain why a nanostructure consisting of a monolayer of Pd on Au(111) is a good catalysts, and predict that Rh/Au(111) should be even better. Our calculations for a fair number of metals are in good agreement with experiment.  相似文献   

3.
李成未 《化学通报》2019,82(9):849-854
针对重铬酸钾传统生产技术存在的高污染、高消耗等问题,研究了电催化合成重铬酸钾绿色新技术。实验研究了自制钌/铱/钛氧化物复合阳极的电催化性能,表征了电极表面形貌。结果表明,该阳极在铬酸钾溶液中具有较低的析氧电位和稳定的高催化活性。实验测得不同反应条件下的阴极析氢速率,建立了析氢速率和析氢量随阳极液铬酸钾初始浓度、反应温度及反应时间变化的数学模型,指出可用宏观测得的阴极析氢量定量表征重铬酸钾电催化反应进程,并讨论了析氢速率和析氢量的影响因素。  相似文献   

4.
The splitting of water into hydrogen and oxygen molecules using sunlight is an attractive method for solar energy storage. Until now, photoelectrochemical hydrogen evolution is mostly studied in acidic solutions, in which the hydrogen evolution is more facile than in alkaline solutions. Herein, we report photoelectrochemical hydrogen production in alkaline solutions, which are more favorable than acidic solutions for the complementary oxygen evolution half‐reaction. We show for the first time that amorphous molybdenum sulfide is a highly active hydrogen evolution catalyst in basic medium. The amorphous molybdenum sulfide catalyst and a Ni–Mo catalyst are then deposited on surface‐protected cuprous oxide photocathodes to catalyze sunlight‐driven hydrogen production in 1 M KOH. The photocathodes give photocurrents of ?6.3 mA cm?2 at the reversible hydrogen evolution potential, the highest yet reported for a metal oxide photocathode using an earth‐abundant hydrogen evolution reaction catalyst.  相似文献   

5.
电解水是目前获得氢气的高效方法之一.过渡金属碳化物因其廉价且在析氢反应(HER)中表现出较高的催化活性而备受关注.我们利用第一性原理首先计算了新型二维四角TiC单层片的稳定性及电子性质,进而计算其表面不同活性位点、不同氢覆盖率下的吸附能、吉布斯自由能(△ GH*)等属性,并且将对应的微观结构进行了系统分析比较,同时结合...  相似文献   

6.
Cyclic voltammetry, hydrogen permeation tests and electrochemical impedance spectroscopy measurements were combined to study the mechanism for hydrogen evolution reaction on X-70 pipe steel in near-neutral pH solution. It is found that hydrogen evolution reaction is dominated by the reduction of water molecules, followed by either an electrochemical hydrogen recombination reaction or a hydrogen absorption reaction. The near-neutral pH environment is capable of generating catalytic surface effect on hydrogen evolution on the pipe steel. The increasing dissolution of the cathodically pre-polarized steel could be due to the enhanced activation of the steel, rather than the increasing amount of hydrogen atoms in the steel. These results provide mechanistic information to understand the near-neutral pH stress corrosion cracking of pipelines.  相似文献   

7.
Abundant transition metal borides are emerging as promising electrochemical hydrogen evolution reaction (HER) catalysts which have a potential to substitute noble metals. Those containing graphene-like (flat) boron layers, such as α-MoB2, are particularly promising and their performance can be further enhanced via doping by the second metal. In order to understand intrinsic effect of doping and rationalize selection of dopants, we employ density functional theory (DFT) calculations to study substitutional doping of α-MoB2 by transition metals as a route towards systematic improvement of intrinsic catalytic activity towards HER. We calculated thermodynamic stability of various transition metal elements to select metals which form a stable ternary phase with α-MoB2. We inspected surface stability of dopants and assessed catalytic activity of doped surface through hydrogen binding free energy at various hydrogen coverages. We calculated the reaction barriers and pathways for the Tafel step of HER for the most promising dopants. The results highlight iron as the best dopant, simultaneously lowering the reaction barrier of the Tafel step while having suitable thermodynamic stability within MoB2 lattice.  相似文献   

8.
半导体光催化分解水的析氢效率研究   总被引:1,自引:0,他引:1  
光催化水制氢是太阳能向氢能转化的有效途径,在清洁能源利用方面具有较大的潜力。光催化产氢过程主要包括光生电子和空穴对的产生、迁移以及在表面活性位点的氧化还原反应,在此过程中由于电子-空穴对的复合以及催化剂的结构和表面活性位点的局限,导致电子和空穴不能完全迁移到催化剂表面并参与氧化还原反应,从而降低了析氢效率。因此本文以抑制光生电子-空穴对复合及增加表面活性位点为目的,从调控催化剂微观特性和外在属性两方面入手,分析总结了目前常见的半导体催化剂粒径、形貌、晶面、表面活性位点调控手段以及异质结构建和助催化剂负载的方法,探究了上述因素对催化剂析氢效率的影响途径和方式,从中归纳出提升析氢效率的办法。最后对光催化制氢的未来研究方向进行了展望,希望以此为光催化产氢效率的提高提供借鉴。  相似文献   

9.
Molybdenum sulfides nanomaterials, such as one-dimensional (1D) nanotubes, nanoribbons, and two-dimensional (2D) nanosheets, have attracted intensive research interests for their novel electronic, optical, and catalytic properties. On the basis of first-principles calculation, here, we report a new series of 1D ultrathin molybdenum sulfides nanowires, including Mo2S6、Mo3S6 and Mo6S10 nanowires. Our results demonstrate that these ultrathin nanowires are both thermal and lattices dynamically stable, confirmed with the calculated phonon spectrum and Born-Oppenheimer molecular dynamic simulation at the temperature up to 600 K. The calculated elastic constant is 21.33, 103.22, and 163.00 eV/? for Mo2S6, Mo3S6, and Mo6S10 nanowires, respectively. Mo2S6 and Mo3S6 nanowires are semiconductors with band gap of 1.55 and 0.46 eV, while Mo6S10 nanowires is metal, implying their potential applications in electronics and optoelectronics. In particular, ultrathin molybdenum sulfides nanowires can be used as catalysts for hydrogen evolution reaction. The calculated Gibbs free energy change for hydrogen evolution is about -0.05 eV for Mo2S6 nanowire, comparable with those of Pt and H-MoS2. The prediction of these 1D molybdenum sulfides nanowires may enrich the 1D family molybdenum sulfides and make a supplement to understand the high performance of hydrogen evolution reaction in transition-metal dichalcogenides.  相似文献   

10.
钙钛矿型稀土氧化物价格低廉、结构可控、性质多样,在催化领域有着广阔的应用前景。本文从钙钛矿型稀土氧化物的结构类型、合成方法及电化学催化反应出发,总结了传统高温合成方法、火焰喷雾法、静电纺丝法和脉冲激光沉积法等几种最常用的合成方法,以及提升其氧析出反应(OER),氢析出反应(HER)和氧还原反应(ORR)催化能力的典型有效方法,概述了近年来钙钛矿型稀土氧化物在电解水、金属空气电池和固体氧化物燃料电池等能源转化储存装置的主要研究进展,进而对钙钛矿型稀土氧化物在能源转化储存领域的应用进行了展望。  相似文献   

11.
Electrocatalytic oxygen reduction reaction(ORR) and hydrogen evolution reaction(HER) in acidic media are vital for the applications of renewable energy electrolyzers.However,the low mass activity of noble Pt urgently needs to be improved due to the strong binding energetics of oxygen species(*O) with Pt sites.Here we report fine PtxSr alloy(~2 nm) supported on N-doped carbon(NC) pyrolyzing from ZIF-8 as bifunctional electrocatalysts toward ORR and HER in acidic media.The representative Pt2<...  相似文献   

12.
电解水制氢技术是未来获得清洁氢能源的有效途径之一。铂作为高效的电解水制氢催化剂,由于其价格昂贵,难以回收,不利于氢能源与氢经济的发展,因此发展高效的非贵金属电催化剂,使电解水制氢过程更加高效、经济化是十分关键的科学问题。本文综述了近年来电解水制氢催化剂的研究进展,重点集中在以碳纤维材料为基底的非贵金属催化剂领域。总结了几类重要的多相异质非贵金属催化剂,包括磷化物、硫化物、硒化物、碳化物、氧化物催化剂等,重点探讨了各种析氢催化剂的合成方法和性能提高策略。同时,本文也简要概述了碳纤维基底材料在电分析化学检测方面的应用研究。  相似文献   

13.
Development of high-efficiency non-noble electrocatalysts for oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is urgently needed for high-performance Zn-air batteries and overall water splitting.Here,a facile strategy to synthesize novel Co-MOF,O-doped carbon(Co-MOF-T)based on Zn,Co-doped glucosamine and ZIF-8 by pyrolysis at temperature T was demonstrated.The prepared Co-MOF-800 showed a superior oxygen reduction reaction(ORR)activity comparable to that of commercial Pt/C catalyst.In addition,this catalyst shows great potential in the overall water splitting due to the excellent oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)activities.Based on the trifunctional activity,the primary Zn-air batteries using a Co-MOF-800 air electrode achieved a high open-circuit voltage of 1.38 V,a specific capacity of 671.6 mAh g-1 Zn,and a prominent peak power density of 144 mW cm-2.Also,the rechargeable Zn-air batteries based on CoMOF-800 air electrode could be smoothly run for 510 cycles with a low voltage gap of 0.58 V.Finally,the trifunctional Co-MOF-800 catalyst was applied to boost the electrochemical water splitting,demonstrating its promising potential as a green energy material for practical applications.  相似文献   

14.
Molybdenum disulfide (MoS2) has been regarded as a favorable photocatalytic co‐catalyst and efficient hydrogen evolution reaction (HER) electrocatalyst alternative to expensive noble‐metals catalysts, owing to earth‐abundance, proper band gap, high surface area, and fast electron transfer ability. In order to achieve a higher catalytic efficiency, defects strategies such as phase engineering and vacancy introduction are considered as promising methods for natural 2H‐MoS2 to increase its active sites and promote electron transfer rate. In this study, we report a new two‐step defect engineering process to generate vacancies‐rich hybrid‐phase MoS2 and to introduce Ru particles at the same time, which includes hydrothermal reaction and a subsequent hydrogen reduction. Compositional and structural properties of the synthesized defects‐rich MoS2 are investigated by XRD, XPS, XAFS and Raman measurements, and the electrochemical hydrogen evolution reaction performance, as well as photocatalytic hydrogen evolution performance in the ammonia borane dehydrogenation are evaluated. Both catalytic activities are boosted with the increase of defects concentrations in MoS2, which ascertains that the defects engineering is a promising route to promote catalytic performance of MoS2.  相似文献   

15.
(Ni-Co)-WC复合电极的析氢催化性能   总被引:12,自引:0,他引:12  
采用 复合电沉 积方法获 得了( Ni Co) W C 复合电极 ,考 察了 复合 电极 在弱 酸性、碱性 和中性介质 中的析 氢电催化 性能,并 在弱酸性 介质中 进行了电 化学稳定 性实验 . 结果 表明,复 合电极具有优越 的析氢 电催化性 能和良好 的电化 学稳定性 .  相似文献   

16.
以喷雾干燥处理的偏钨酸铵为前驱体, 采用CH4/H2为还原碳化气氛, 利用固定床气固反应法制备了具有介孔结构的碳化钨(WC)粉体. 然后通过浸渍法制备了Pt/WC粉末催化剂. 通过XRD和SEM等测试手段对Pt/WC粉末样品进行了表征, 结果表明, Pt颗粒平均直径约为13.5 nm, 且均匀分散在介孔结构WC载体上. 采用循环伏安和线性扫描等方法研究了酸性介质中Pt/WC粉末微电极对电化学析氢过程的电催化行为. 结果表明, 该电极对析氢反应具有很好的电催化活性和化学稳定性. 通过测试和计算, Pt/WC粉末微电极的Tafel方程中的a值为0.292 V, 属于低超电势析氢材料, 析氢交换电流密度为4.42 mA·cm-2, 与铂电极在同一个数量级上, 当超电势为250 mV时, 其析氢反应的活化能为26.20 kJ·mol-1.  相似文献   

17.
The hydrogen evolution reaction using semiconductor photocatalysts has been significantly improved by cocatalyst loading. However, there are still many speculations regarding the actual role of the cocatalyst. Now a photocatalytic hydrogen evolution reaction pathway is reported on a cocatalyst site using TiO2 nanosheets doped with Rh at Ti sites as one‐atom cocatalysts. A hydride species adsorbed on the one‐atom Rh dopant cocatalyst site was confirmed experimentally as the intermediate state for hydrogen evolution, which was consistent with the results of density functional theory (DFT) calculations. In this system, the role of the cocatalyst in photocatalytic hydrogen evolution is related to the withdrawal of photo‐excited electrons and stabilization of the hydride intermediate species; the presence of oxygen vacancies induced by Rh facilitate the withdrawal of electrons and stabilization of the hydride.  相似文献   

18.
The hydrogen evolution reaction at n- and p-GaAs electrodes has been reinvestigated. As in the case of metal electrodes, hydrogen evolution can occur in two ways: at ?0.5 V (SCE) hydronium ions are reduced, at ?1.25 V (SCE) reduction of water molecules takes place. It is confirmed that in both cases conduction band electrons are responsible for the two reduction steps, forming adsorbed hydrogen atoms in the first and hydrogen molecules in the second step. Hole injection can occur only to a negligible extent, although it appears energetically feasible.  相似文献   

19.
镍硫析氢活性阴极的电化学制备及其电催化机理   总被引:2,自引:0,他引:2  
以硫代硫酸钠作为硫源, 在基本的瓦特浴镀液体系中通过恒电流电沉积方法获得了不同晶体结构的镍硫合金活性阴极. 通过能量散射谱(EDS)、X射线衍射(XRD)以及扫描电子显微镜(SEM)对镀层的化学成分、晶体结构以及表面形貌进行了分析, 并对活性阴极的电催化活性以及析氢过程机理进行了研究. XRD测试结果表明, 随着镀层中硫含量的变化, 镀层的晶体结构呈现出非晶态/Ni3S2混晶和金属间化合物(Ni3S2)两种晶体结构, 其中, 硫含量为33.9%(原子分数)的非晶态/Ni3S2混晶结构的活性阴极在碱性溶液中具有很好的析氢活性, 其优良的析氢活性主要来自于Ni3S2很强的吸附氢能力. 交流阻抗的测试结果表明, Ni3S2金属间化合物的析氢过程只存在一个电化学反应步骤, 而非晶态/Ni3S2混晶镍硫合金活性阴极的析氢过程存在三个电化学反应步骤.  相似文献   

20.
The electrochemical hydrogen evolution reaction is catalyzed most effectively by the Pt group metals. As H2 is considered as a future energy carrier, the need for these catalysts will increase and alternatives to the scarce and expensive Pt group catalysts will be needed. We analyze the ability of different metal surfaces and of the enzymes nitrogenase and hydrogenase to catalyze the hydrogen evolution reaction and find a necessary criterion for high catalytic activity. The necessary criterion is that the binding free energy of atomic hydrogen to the catalyst is close to zero. The criterion enables us to search for new catalysts, and inspired by the nitrogenase active site, we find that MoS2 nanoparticles supported on graphite are a promising catalyst. They catalyze electrochemical hydrogen evolution at a moderate overpotential of 0.1-0.2 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号