首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Recently it has been shown that an X-type magnetic neutral line may form in Jupiter's nightside magnetosphere as the result of the current flowing in the plasma disc. Still, a collisionless reconnection mechanism is required to tear up the magnetic field. Recently, Büchner and Zelenyi showed that the chaotization of the electron motion can lead to fast collisionless reconnection in the Earth's magnetotail. In their theory, enhanced pitch angle diffusion is obtained when the curvature parameter κe decreases to κe ≃ 1.6. We apply Büchner and Zelenyi's theory to Jupiter's magnetosphere. The curvature parameter is obtained from the measured plasma parameters and from a self-consistent equilibrium model of the magnetic field, and the results for κe show that the larger the assumed plasma disc, the larger is the range where κe is less than or equal to the stochasticity threshold 1.6. This indicates that chaotic magnetic-field line reconnection may occur in Jupiter's nightside magnetosphere around 60R J from the planet, and is consistent with thein situ magnetic-field observations, that show the signature of magnetic islands and of tearing-mode instability in the relevant region. We speculate that these processes, differently from the Earth's case, occur in a semi-steady way. Paper presented at the V Cosmic Physics National Conference, S. Miniato, November 27–30, 1990.  相似文献   

2.
Summary The frequency spectrum of the modes that lead to fast reconnection of magnetic-field lines in a plasma configuration with sharp current density gradients is obtained and compared to that of the more familiar magnetohydrodynamic tearing modes.  相似文献   

3.
Asymmetric giant magnetoimpedance (GMI) effect in amorphous ribbons is very promising due to its possible application in developing the highly sensitive linear magnetic-field sensors. In this paper, the model of the nonlinear asymmetric volt-ampere characteristics in field-biased Co-based amorphous ribbon has been established through the time derivative of the longitudinal magnetization component in the ribbon. Its harmonics are also developed by Fourier analysis. The influence of the current amplitude on the nonlinear asymmetric effect has been studied. It is found that when the current amplitude is 8.54 mA, the sensitivity of the first harmonic voltage on the external field is equal to that of the second harmonic voltage. The results obtained are useful for developing the high-sensitive magnetic-field sensors.  相似文献   

4.
Electrostatic solitary waves (ESWs) are observed in the vicinity of the magnetic null of the widely studied magnetic reconnection taking place at the near-earth tail when current sheet becomes dramatic thinning during substorm time on 1 October 2001. We use the Imada method for the 2-D reconnection model and study the characteristics of ESWs near the X-line region and the magnetic null points. The result shows that the amplitude of the observed ESWs in the vicinity of X-line region ranges from 0.1mV/m to 5mV/m, and the amplitude is larger near the magnetic null points. The generation mechanism and the role of ESWs associated with magnetic reconnection are also discussed.  相似文献   

5.
王琳  魏来  王正汹 《物理学报》2020,(5):260-266
近20年来,大量的磁岛链现象从空间、天体物理到磁约束实验室等离子体中被观察到,并且有关磁岛链现象的许多物理特性可以直接被计算机模拟结果所证实.磁岛链理论在磁重联理论中的重要进展为快速磁重联的发生机制提供了更加具有说服力的解释.本文采用二维三分量的磁流体力学模型,数值研究了不同宽度和不同强度的垂直平面驱动流对磁重联中磁岛链不稳定性的影响,并分析了导向场和垂直平面的驱动流对磁岛链的共同作用.研究结果表明:垂直平面驱动流的宽度越宽或强度越强,越容易产生磁岛链结构.电流片中的小磁岛个数及重联率随着垂直平面驱动流宽度及强度的增加而增加.另外,导向场会改变重联平面内磁岛链的对称性.相同导向场情况下,驱动流强度越大,小磁岛的增长速度越快.  相似文献   

6.
A low energy radioactive beam of polarized 8Li has been used to observe the vortex lattice near the surface of superconducting NbSe2. The inhomogeneous magnetic-field distribution associated with the vortex lattice was measured using depth-resolved beta-detected NMR. Below Tc, one observes the characteristic line shape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius. The size of the vortex core varies strongly with the magnetic field. In particular, in a low field of 10.8 mT, the core radius is much larger than the coherence length. The possible origin of these giant vortices is discussed.  相似文献   

7.
Characteristics of the high-power reconnection heating were measured for the first time directly by two-dimensional measurements of ion and electron temperatures. While electrons are heated mainly inside the current sheet by the Ohmic heating power, ions are heated mainly by fast shock or viscosity damping of the reconnection outflow in the two downstream areas. The magnetic reconnection converts the energy of reconnecting magnetic field B(p) mostly to the ion thermal energy, indicating that the reconnection heating energy is proportional to B(p)(2).  相似文献   

8.
用超高速激光纹影技术测量了Z箍缩等离子体磁重联现象。实验采用超高速光电分幅相机,配合激光纹影技术,测量了XP-1装置上两根金属丝产生的等离子体分布,论证了超高速激光纹影技术研究Z箍缩磁重联现象的可行性。双钨丝实验结果表明,电流加载约10ns后金属丝已有明显膨胀,线性拟合得到平均膨胀速度约8km/s,金属丝内外两侧出现了规则的极有可能是垂直磁场的电热不稳定性扰动,并沿角向高度关联。铝丝负载的实验结果表明,早期的不稳定性波长为0.4mm,电流峰值之后金属丝初始位置仍有大量等离子体,后期的不稳定性波长约1.5mm。这些现象揭示了不稳定性发展的一个主要特征:短波模式受抑制,长波模式将占主导。  相似文献   

9.
The fluctuation-induced Hall electromotive force, [deltaJ x deltaB]/nee, is experimentally measured in the high-temperature interior of a reversed-field pinch plasma by a fast Faraday rotation diagnostic. It is found that the Hall dynamo effect is significant, redistributing (flattening) the equilibrium core current near the resonant surface during a reconnection event. These results imply that effects beyond single-fluid MHD are important for the dynamo and magnetic reconnection.  相似文献   

10.
Strong electron pressure anisotropy has been observed upstream of electron diffusion regions during reconnection in Earth's magnetotail and kinetic simulations. For collisionless antiparallel reconnection, we find that the anisotropy drives the electron current in the electron diffusion region, and that this current is insensitive to the reconnection electric field. Reconstruction of the electron distribution function within this region at enhanced resolutions reveals its highly structured nature and the mechanism by which the pressure anisotropy sets the structure of the region.  相似文献   

11.
The linear and nonlinear evolution of a relativistic current sheet of pair (e(+/-)) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely propagating modes, which we call the relativistic drift-kink-tearing instability. These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of nonthermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.  相似文献   

12.
13.
The impurity ion temperature evolution has been measured during three types of impulsive reconnection events in the Madison Symmetric Torus reversed field pinch. During an edge reconnection event, the drop in stored magnetic energy is small and ion heating is observed to be limited to the outer half of the plasma. Conversely, during a global reconnection event the drop in stored magnetic energy is large, and significant heating is observed at all radii. For both kinds of events, the drop in magnetic energy is sufficient to explain the increase in ion thermal energy. However, not all types of reconnection lead to ion heating. During a core reconnection event, both the stored magnetic energy and impurity ion temperature remain constant. The results suggest that a drop in magnetic energy is required for ions to be heated during reconnection, and that when this occurs heating is localized near the reconnection layer.  相似文献   

14.
The chiral magnetic effect is the appearance of a quark electric current along a magnetic-field direction in topologically nontrivial gauge fields. There is evidence that this effect is observed in collisions between heavy ions at the RHIC collider. The features of the chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature have been investigated. It has been found that the electric current increases in the magnetic-field direction owing to quantum fluctuations of gluon fields. Fluctuations of the local charge density and chirality also increase with the magnetic field strength, which is a signature of the chiral magnetic effect.  相似文献   

15.
Detailed measurements of spontaneous magnetic reconnection are presented. The experimental data, which were obtained in the new closed Versatile Toroidal Facility magnetic configuration, document the profile evolution of the plasma density, magnetic flux function, reconnection rate, and the current density during a spontaneous reconnection event in the presence of a strong guide magnetic field. The reconnection process is at first slow, which allows magnetic stress to build in the system while the current channel becomes increasingly narrow and intense. The onset of a fast reconnection event occurs as the width of the current channel approaches the ion-sound-Larmor radius rho s. During the reconnection event magnetically stored energy is channeled into energetic ion outflows and a rapid increase in the electron temperature.  相似文献   

16.
Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfvén time.  相似文献   

17.
重复脉冲强流电子束传输技术研究   总被引:2,自引:0,他引:2       下载免费PDF全文
分析并推导出了环形强流电子束的稳定传输条件,通过静电磁场模拟计算对CHP01强流电子加速器二极管引导磁场的位形分布、幅值大小及磁场电源进行了优化设计.经实验调试及束斑测量,表明设计的1秒磁场满足束流稳定传输条件,能使电压800kV、电流8kA、脉冲宽度40ns、脉冲重复频率100Hz的环形强流电子束稳定传输,并已成功运用于CHP01强流电子加速器束流传输系统. 关键词: 束流传输 引导磁场 二极管 重复脉冲 电子束  相似文献   

18.
Local ion temperature and flows are measured directly in the well-characterized reconnection layer of a laboratory plasma. The measurements indicate strongly that ions are heated due to reconnection and that more than half of the reconnected field energy is converted to ion thermal energy. Neither classical viscous damping of the observed sub-Alfvenic ion flows nor classical energy exchange with electrons is sufficient to account for the ion heating, suggesting the importance of nonclassical dissipation mechanisms in the reconnection layer.  相似文献   

19.
Using the largest three-dimensional particle-in-cell simulations to date, collisionless magnetic reconnection in large-scale electron-positron plasmas without a guide field is shown to involve complex interaction of tearing and kink modes. The reconnection onset is patchy and occurs at multiple sites which self-organize to form a single, large diffusion region. The diffusion region tends to elongate in the outflow direction and become unstable to secondary kinking and formation of "plasmoid-rope" structures with finite extent in the current direction. The secondary kink folds the reconnection current layer, while plasmoid ropes at times follow the folding of the current layer. The interplay between these secondary instabilities plays a key role in controlling the time-dependent reconnection rate in large-scale systems.  相似文献   

20.
The nature of collisionless reconnection in a three-species plasma composed of a heavy species, protons, and electrons is examined. In addition to the usual two length scales present in two-species reconnection, there are two additional larger length scales in the system: one associated with a "heavy whistler" which produces a large scale quadrupolar out-of-plane magnetic field, and one associated with the "heavy Alfvén" wave which can slow the outflow speed and thus the reconnection rate. The consequences for reconnection with O+ present in the magnetotail are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号