首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We suggest a balance-equation approach to hot-electron transport in a single arbitrary energy band subject to an intense radiation field of terahertz (THz) frequency, including all the multiphoton emission and absorption processes and taking account of realistic scatterings due to impurities and phonons. This approach, which allows one to calculate THz-driving, time-averaging transport based on a set of time-independent equations, provides a convenient method to study the effect of an intense THz electric field on carrier transport in a nonparabolic energy band. As an example, these fully three-dimensional, acceleration- and energy-balance equations are applied to the discussion of superlattice miniband transport at lattice temperature T=77 and 300 K driven by the THz radiation field of varying strengths. It is shown that the current through a dc biased miniband superlattice is greatly reduced by the irradiation of an intense THz electric field. Received: 23 January 1998 / Revised: 31 March 1998 / Accepted: 20 April 1998  相似文献   

2.
We present the proposal of a microwave-driven semiconductor superlattice oscillator. We show that the interplay of a microwave pump field with a synchronous harmonic field can make a semiconductor superlattice to a gain medium for the harmonic field. Placing the superlattice in a resonator for the harmonic field allows the operation of an oscillator. The gain mechanism is based on Bloch oscillations of miniband electrons. The gain is mediated either by the interaction of the high-frequency field with the single electrons or with space charge domains or with both. The microwave-driven superlattice oscillator should be suitable for generation of coherent radiation up to several THz.  相似文献   

3.
We report an experimental study indicating ultrafast creation and annihilation of space-charge domains in a semiconductor superlattice under the action of a THz field. Our experiment was performed for an InGaAs/InAlAs superlattice with the conduction electrons undergoing miniband transport. We applied to a superlattice a dc bias that was slightly smaller than a critical bias necessary for the formation of space-charge domains caused by a static negative differential conductivity. Additionally subjecting the superlattice to a strong THz field, resulted in a dc transport governed by the formation of domains if the frequency of the field was smaller than an upper frequency limit (~3 THz). From this frequency limit for the creation and annihilation of domains we determined the characteristic time of the domain buildup. Our analysis shows that the buildup time of domains in a wide miniband and heavily doped superlattice is limited by the relaxation time due to scattering of the miniband electrons at polar optic phonons. Our results are of importance for both an understanding of ultrafast dynamics of pattern formation in nanostructures and the development of THz electronic devices.Received: 25 March 2004, Published online: 23 July 2004PACS: 72.20.Ht High-field and nonlinear effects - 72.30. + q High-frequency effects; plasma effects - 73.21.Cd SuperlatticesK.N. Alekseev: Permanent address: Department of Physical Sciences, P.O. Box 3000, University of Oulu FIN-90014, Finland.  相似文献   

4.
We consider a high-frequency response of electrons in a single miniband of superlattice subject to dc and ac electric fields. We show that Bragg reflections in miniband result in a parametric resonance which is detectable using ac probe field. We establish theoretical feasibility of phase-sensitive THz amplification at the resonance. The parametric amplification does not require operation in conditions of negative differential conductance. This prevents a formation of destructive domains of high electric field inside the superlattice.  相似文献   

5.
The oscillatory motion of electrons in a periodic potential under a constant applied electric field, known as Bloch oscillations (BO), is one of the most striking and intriguing quantum effects and was predicted more than eighty years ago. Oscillating electrons emit electromagnetic radiation and here we consider this BO effect for emission in the THz region. To date, it has been assumed that the Bloch oscillation of an electron is anharmonic oscillation, therefore with radiation emitted at the single Bloch frequency. We analyze scenarios when Bloch oscillations can be accompanied by the emission of radiation not only at the Bloch frequency but also with double and triple Bloch frequencies. The first scenario means that electrons could jump over neighboring Stark states. The second scenario of anharmonic emission is coupled to an opening of the minigap in the miniband.  相似文献   

6.
中物院高功率THz FEL装置的理论分析和优化设计   总被引:3,自引:2,他引:1       下载免费PDF全文
在1~3 THz频段内设计了11个分点频率,对每一频率的对应的场强和电子束能量进行了选取和计算。模拟结果表明:采用目前参数基本能够达到设计要求;辐射频段在2.6 THz附近时装置输出功率和增益都比较高,可以先锁定这个频段附近进行实验的调试;在长波段即1 THz左右时,滑移效应显著,腔增益和输出功率较低,实验实现比较困难,因此在1 THz频段附近必须积极想办法来提高输出功率。  相似文献   

7.
在1~3 THz频段内设计了11个分点频率,对每一频率的对应的场强和电子束能量进行了选取和计算。模拟结果表明:采用目前参数基本能够达到设计要求;辐射频段在2.6 THz附近时装置输出功率和增益都比较高,可以先锁定这个频段附近进行实验的调试;在长波段即1 THz左右时,滑移效应显著,腔增益和输出功率较低,实验实现比较困难,因此在1 THz频段附近必须积极想办法来提高输出功率。  相似文献   

8.
Electron dynamics and the nonlinear effects of electric conduction in a two-dimensional semiconductor superlattice with nonadditive miniband dispersion relations have been studied in the case of strong high-frequency electric fields applied to the superlattice. The conditions for dynamic electron localization and electromagnetic transparency in such superlattices have been revealed.  相似文献   

9.
《Current Applied Physics》2019,19(6):756-761
An externally applied magnetic field was used to induce increased photocarrier transport along the high mobility channel in GaAs/AlGaAs modulation-doped heterostructures (MDH). The terahertz (THz) emission from GaAs/AlGaAs MDH increases with increasing magnetic field, applied parallel to the heterojunction. The THz emission enhancement factors due to the magnetic field in MDH are higher than in undoped GaAs/AlGaAs heterojunction and in bulk SI-GaAs. This demonstrates that properly utilizing the high-mobility channel for carrier transport promises to be a viable design consideration for efficient THz photoconductive antenna (PCA) devices. Moreover, it was observed that for MDH, as well as for an undoped GaAs/AlGaAs heterojunction, the enhancement for one magnetic field direction is greater than the enhancement for the opposite direction. This is in contrast to the symmetric enhancement with magnetic field direction observed in a bulk SI-GaAs. An analysis of photocarrier trajectories under an external magnetic field supports the explanation that the enhancement asymmetry with magnetic field direction in MDH is due to the cycloid motion of electrons as affected by the GaAs/AlGaAs interface.  相似文献   

10.
Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).  相似文献   

11.
陈静  蒋震宗  陆加佳  刘永生  朱燕艳 《物理学报》2010,59(12):8862-8869
基于电子在分裂能级系统中同时存在的共振隧穿和子带输运过程,结合光生载流子作用提出了纳米硅结构中的光电输运理论模型.利用该模型计算了纳米硅结构在光照条件下的电流密度、电场强度及电子浓度分布.结果表明,光生电子在具有分裂能级的纳米硅中是以共振隧穿为主要输运方式.在此基础上,详细研究了光电流与吸收系数、外加偏压以及纳米硅层层数之间的关系,发现在特定的外界条件下光电流会出现跳变增加的现象,其物理原因是纳米硅结构中电场强度的二次分布.  相似文献   

12.
The differential dc and hf conductivities of semiconductor superlattices with various electron miniband dispersion relations are studied. It is shown that, due to the anharmonicity of Bloch oscillations, the hf conductivity can be negative at frequencies equal to integral multiples of the Bloch frequency. This effect can arise even in the regions where the differential dc conductivity is positive. The results of the study suggest that superlattices with a miniband dispersion law in which the effective electron mass is positive in a sizable part of the miniband and decreases as the electron energy increases can be used to generate and amplify terahertz-range (microwave) fields.  相似文献   

13.
We present a model for the simulation of the effect of stimulated emission on the transport and optical properties in quantum-cascade lasers. The model is based on the self-consistent solution of the Schrödinger and Poisson equations using a one-dimensional scattering rate approach, which includes the laser rate equations. We discuss the charge redistribution, the modification of the current density, and the shift of the gain maximum for various designs of mid-infrared as well as THz quantum-cascade lasers. We found that this shift varies for the different designs, but is of similar order of magnitude as due to typical fluctuations of the layer parameters such as thicknesses and composition. In some cases, the inclusion of stimulated emission results in the appearance of negative differential conductivity, which may explain the observed instabilities of the current and light output power.  相似文献   

14.
We report on a theoretical analysis of terahertz (THz-) field induced nonlinear dynamics of electrons in a semiconductor superlattice that are capable to perform Bloch oscillations. Our results suggest that for a strong THz-field a dc voltage should be generated. We have analyzed the real-time dynamics using a balance equation approach to describe the electron transport in a superlattice miniband. Taking account of both Bloch oscillations of electrons in a superlattice miniband and dissipation, we studied the influence of a strong THz-field on currently available superlattices at room temperature. We found that a THz-field can lead to a negative conductance resulting in turn in a THz-field induced dc voltage, and that the voltage per superlattice period should show, for varying amplitue of the THz-field, a form of wisted plateaus with the middle points being with high precision equal to the photon energy divided by the electron charge. We show voltage to the finite voltage state, and that in the finite voltage state dynamic localization of the electrons in a miniband occurs.  相似文献   

15.
戴冬东  卑华  戴志敏 《中国物理 C》2009,33(Z2):139-141
In recent years, people are dedicated to the research work of finding compact THz sources with high emission power. Smith-Purcell radiation is qualified for the possibility of coherent enhancement due to the effect of FEL mechanism. The compact experiment device is expected to produce hundreds mW level THz ray. The electron beam with good quality is provided under the optimized design of the electron gun. Besides, the grating is designed as an oscillator without any external feedbacks. While the beam passes through the grating surface, the beam bunching will be strong and the second harmonics enhancement will be evident, as is seen from the simulation results.  相似文献   

16.
Stimulated Stokes emission has been observed from silicon crystals doped by antimony donors when optically excited by radiation from a tunable infrared free electron laser. The photon energy of the emission is equal to the pump photon energy reduced by the energy of the intervalley transverse acoustic (TA) g phonon in silicon (approximately 2.92 THz). The emission frequency covers the range of 4.6-5.8 THz. The laser process occurs due to a resonant coupling of the 1s(E) and 1s(A1) donor states (separation approximately 2.97 THz) via the g-TA phonon, which conserves momentum and energy within a single impurity center.  相似文献   

17.
A microscopic theory is presented for high-field miniband transport in a two-dimensional superlattice. The energy transfer to the lateral electron motion is taken into account as well as scattering on polar optical phonons. Oscillatory current anomalies appear when the optical phonon frequency is a multiple of the Bloch frequency. The current oscillations, which are due to Wannier–Stark localization, are much more pronounced in a two-dimensional than in a three-dimensional system with a superlattice structure in one direction.  相似文献   

18.
D. Abouelaoualim 《Pramana》2006,66(2):455-465
We develop a theoretical model to the scattering time due to the electron-confined LO-phonon in GaAs-AlxGa1-xAs superlattice taking into account the sub-band parabolicity. Using the new analytic wave function of electron miniband conduction of superlattice and a reformulation slab model for the confined LO-phonon modes, an expression for the electron-confined LO-phonon scattering time is obtained. In solving numerically a partial differential equation for the phonon generation rate, our results show that forx = 0.45, the LO-phonon in superlattice changes from a bulk-like propagating mode to a confined mode. The dispersion of the relaxation time due to the emission of confined LO-phonons depends strongly on the total energy.  相似文献   

19.
We report a superlattice parametric oscillator (SPO), with a GaAs/AlAs superlattice as the active element. The SPO was pumped by a microwave field (power 4 mW) and produced third harmonic radiation at subterahertz frequencies (near 300 GHz; 0.1 mW). We attribute the parametric gain to the nonlinearity of the miniband transport.  相似文献   

20.
胡放荣  胥欣  李鹏  徐新龙  王月娥 《中国物理 B》2017,26(7):74219-074219
We experimentally demonstrate a mechanically tunable metamaterials terahertz(THz) dual-band bandstop filter. The unit cell of the filter contains an inner aluminum circle and an outside aluminum Ohm-ring on high resistance silicon substrate. The performance of the filter is simulated by finite-integration-time-domain(FITD) method. The sample is fabricated using a surface micromachining process and experimentally demonstrated using a THz time-domain-spectroscopy(TDS) system. The results show that, when the incident THz wave is polarized in y-axis, the filter has two intensive absorption peaks locating at 0.71 THz and 1.13 THz, respectively. The position of the high-frequency absorption peak and the amplitude of the low-frequency absorption peak can be simultaneously tuned by rotating the sample along its normal axis.The tunability of the high-frequency absorption peak is due to the shift of resonance frequency of two electrical dipoles,and that of the low-frequency absorption peak results from the effect of rotationally induced transparent. This tunable filter is very useful for switch, manipulation, and frequency selective detection of THz beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号