首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent progress of nano-technology with near-field scanning optical microscope (NSOM) is surveyed in this article. We focus mainly on NSOM, nano-scale spectroscopy with NSOM, probe technology of NSOM, and study of nano-structured metallic surface with NSOM. First, we follow developments of aperture NSOM and apertureless NSOM, and then address progress of NSOM-combined spectroscopy which is so sufficiently advanced with apertureless NSOM technology to provide chemical information on length scales of a few nanometers. Recent achievement of nano-scale Raman and IR spectroscopy will be introduced. Finally, research on nano-optic elements using surface plasmon polariton with NSOM is introduced as an example of NSOM applications to nano-structured metallic surfaces.  相似文献   

2.
We demonstrated a contrast enhancement in a near-field scanning optical microscope (NSOM) by optical interference with an aperture probe in reflection (illumination-collection) mode operation. We observed a NiO film deposited on a sapphire substrate and clearly visualized 2-nm-deep nano-channel structures on the surface of the film. The reflection NSOM enhanced by optical interference is quite a promising instrument for high-resolution optical detection and estimation of low-contrast nanostructures.  相似文献   

3.
Near-field Scanning Optical Microscopy (NSOM) in liquid environment is expected to allow time resolved morphological mappings on cellular surfaces on the nanoscale level. Near-field Optical Analysis (NOA) via NSOM exploits the energy transfer from the tip of an optical element (tip diameter > or = 20nm), oscillating within the range of the characteristic length of the energy transfer ( approximately 10nm) in the near-field of the surface to be analysed. In NOA, a molecular assembly is monitored by visible light with a resolution far below the wavelength of visible light. Actually, NOA is successfully applied in mapping local optical contrasts, for instance in photonic crystals with dielectric periodicities on the nanoscale. NSOM could in principle be performed in two different modes: tapping mode, with tip-oscillations perpendicular, or shear force mode, with tip-oscillations parallel to the substrate. Both basic modes have specific advantages and disadvantages. In biological systems (e.g. in cell cultures), where scanning in liquids is prevalent, elongated optical elements non-invasively operated in the shear force modus could have some specific advantages when compared to contact modus systems. While tapping mode NSOM provides satisfactory nanoscale images even on solid surfaces covered with millimetres of liquids, the performance of shear force mode NSOM is presently largely confined to operations on dry samples. This is due to the inability of conventional shear force mode NSOM systems to provide sharp topographic images of sample surfaces substantially covered with liquids. By equipping a conventional NSOM system with hydrophobic optical elements, shear force mode based topographic images could be obtained on biological samples in dry as well as in aqueous environment, and with resolutions on the nanoscale level.  相似文献   

4.
介绍了近场光学显微镜的基本原理,并利用微波代替可见光模拟了近场光学显微镜实验.  相似文献   

5.
Campillo AL  Madsen CK  Hsu JW 《Optics letters》2003,28(13):1111-1113
By use of a near-field scanning optical microscope (NSOM) in collection mode, the intensity distribution along a 2 x 2 multimode interference coupler was directly imaged as a function of wavelength. Although calculations can predict the general trend of wavelength dependence and the approximate positions of multiple images in the coupler, the accuracy is poor because of uncertainties in the waveguide width. We show that direct imaging using a NSOM bypasses calculational uncertainties and proves to be a powerful technique for studying these waveguide devices.  相似文献   

6.
We have developed a polarization-preserving near-field scanning optical microscopy (NSOM) optical fiber probe and with it observed the influence of defects and weak stresses on a propagation light within polymeric optical waveguides. To characterize the influence, we intentionally printed an indentation in the vicinity of the waveguide and then evaluated the resulting influence using polarized guide-collection-mode NSOM images taken around the indentation. When transverse magnetic polarized light enters a waveguide, the light intensity becomes greater on the near side of the indentation than on the far side, as measured by a linearly polarized component perpendicular to the direction of light propagation. The most probable cause of this phenomenon is microdefects generated by the printing of the indentation. The polarized NSOM technique is useful in searching for small defects or stresses within integrated photonic devices.  相似文献   

7.
Near-field Scanning Optical Microscopy (NSOM) is a powerful tool for investigating optical field with resolution greater than the diffraction limit. In this work, we study the spectral response that would be obtained from an aperture NSOM system using numerical calculations. The sample used in this study is a bowtie nanoaperture that has been shown to produce concentrated and enhanced field. The near- and far-field distributions from a bowtie aperture are also calculated and compared with what would be obtainable from a NSOM system. The results demonstrate that it will be very difficult to resolve the true spectral content of the near-field using aperture NSOM. On the other hand, the far-field response may be used as a guide to the near-field spectrum.  相似文献   

8.
Two distinct and general definitions of ellipsometry and polarimetry are stated ab initio that account for the existing duality in usage of both terms. Ellipsometers and polarimeters are next defined accordingly. The definitions contrast these commonly used similar terms against one another. Viewed within the framework established by these general definitions, optical ellipsometry of interfaces and films (the main topic of this conference) is recognized as a narrow particularization of a broad scheme. Examples of ellipsometry (polarimetry) in different regions of the electromagnetic spectrum provide important perspective on the considerable extent of the field. Another perspective (in a different dimension) is gained when the application of ellipsometry (polarimetry) to different samples is considered. This relates ellipsometry of interfaces and films to polarimetry of bulk anisotropic samples and light scattering by systems of particles. Three individual procedures (namely, polarization measurement, application of electromagnetic theory, and computation) are identified as essential to the complete utilization of ellipsometry (polarimetry).  相似文献   

9.
We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacancy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.  相似文献   

10.
Near-field imaging is a well-established technique in biomedical measurements, since closer to the detail of interest it is possible to resolve subwavelength details otherwise unresolved by regular lenses. A near-field scanning optical microscope (NSOM) tip may indeed overcome the resolution limits of far-field optics, but its proximity inherently perturbs the measurement. Here, we apply the recent concept of a "cloaked sensor" to an NSOM device in collection mode, showing theoretically how a proper plasmonic cover applied to an NSOM tip may drastically improve its overall measurement capabilities.  相似文献   

11.
李兴鳌  阮存军  高君芳  肖渊  庞文宁  尚仁成 《物理》2000,29(12):736-739
极化电子束在物理学及其相关领域应用十分广泛,要深入研究这些应用必须对电子束的极化度进行精确测量,通常测量电子束极化度的仪器有两种:Mott极化度测量仪和光学极化度测量仪。因光学极化度测量仪与Mott极化度测量仪相比有许多优点而倍受关注。文章首先阐述了光学极化度测量仪的理论基础和实验原理,然后介绍了所研制光学极化度测量仪的设计方案和物理结构,最后给出了用该光学极化度测量仪测量弱光的Stokes参数的结果。  相似文献   

12.
We report on the novel design of the near-field scanning optical microscope (NSOM) which operates in liquid environment. A resonance tracking digital scanning method is applied to compensate the resonance shift due to the evaporation of the liquid in the atmospheric pressure. By this method, stable operation of NSOM system is demonstrated by showing topographic images of the metallic grating embedded in liquid environment.  相似文献   

13.
We demonstrate high-resolution fluorescence imaging of single molecules using near-field scanning optical microscopy (NSOM) with a tiny aperture probe for two different wavelengths in visible range in the illumination mode of operation. The spatial resolutions obtained at both excitation wavelengths were almost the same and the highest resolution realized was about 10 nm. To discuss the achievable resolution in aperture NSOM, we also employed a computer simulation by the finite-difference time-domain method for various aperture sizes and wavelengths. The resolution of 10 nm is predicted to be contributed by the single peak of localized near-field light around the rim of the aperture.  相似文献   

14.
Using near-field scanning optical microscopy (NSOM), we report the spatial distribution of photoluminescence (PL) intensity in III-nitride-based semiconductor layers grown on GaN substrates. Undoped GaN, In0.11Ga0.89N, and In0.13Ga0.87N/GaN multi-quantum wells (MQWs) were grown by metal organic chemical vapor deposition (MOCVD) on freestanding GaN substrates. Micro-Raman spectroscopy has been used to evaluate the crystalline properties of the GaN homoepitaxial layers. The variation of the PL intensity from the NSOM imaging indicates that the external PL efficiency fluctuates from 20% to 40% in the 200 nm InGaN single layer on freestanding GaN, whereas it fluctuates from 20% to 60% in InGaN/GaN MQWs. In the NSOM-PL images, bright island-like features are observed. After deconvolution with the spatial resolution of the NSOM, the size of these features is estimated to be in the range of 150–250 nm.  相似文献   

15.
Plasmonic field enhancement in a fully coated dielectric near field scanning optical microscope (NSOM)probe under radial polarization illumination is analyzed using an axially symmetric three-dimensional (3D)finite element method (FEM) model. The enhancement factor strongly depends on the illumination spot size, taper angle of the probe, and the metal film thickness. The tolerance of the alignment angle is investigated. Probe designs with different metal coatings and their enhancement performance are studied as well. The nanometric spot size at the tip apex and high field enhancement of the apertureless NSOM probe have important potential application in semiconductor metrology.  相似文献   

16.
丁海兵  庞文宁  刘义保  尚仁成 《中国物理》2005,14(12):2440-2443
Optical electron polarimetry is suitable for calibration of a spin-polarized electron source, especially for measurement of polarization of spin-polarized electron beam. In this paper, a new optical electron polarimeter is described, which is based on the circularly polarized He radiation induced by the bombarding of He atoms with spin-polarized electrons. The theoretical basis of the optical electron polarimetry and the structure of the optical electron polarimeter are discussed. The measurement of polarization of spin-polarized electrons produced from a new GaAs (100) spin-polarized electron source is carried out. The result of polarization of 30.8% for our spin-polarized electron source is obtained using the He optical electron polarimeter.  相似文献   

17.
The physical origin of the crosshatch electrical activity in relaxed GeSi films was studied using a near-field scanning optical microscope (NSOM). The contrast and patterns in the near-field photocurrent images depend on the polarization direction of the NSOM light. These results rule out composition nonuniformity, junction depth variation, and scanning artifacts as dominant sources of the contrast. Numerical calculations show that local changes in band structure due to strain fields of the misfit dislocations are responsible for the experimental observations.  相似文献   

18.
As a component of near-field scanning optical microscope (NSOM), optical fiber probe is an important factor influncing the equipment resolution. Electroless nickel plating is introduced to metallize the optical fiber probe. The optical fibers are etched by 40% HF with Turner etching method. Through pretreatment, the optical fiber probe is coated with Ni-P film by electroless plating in a constant temperature water tank. Atomic absorption spectrometry (AAS), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry (EDXS) are carried out to characterize the deposition on fiber probe. We have reproducibly fabricated two kinds of fiber probes with a Ni-P film: aperture probe and apertureless probe. In addition, reductive particle transportation on the surface of fiber probe is proposed to explain the cause of these probes.  相似文献   

19.
We present an overview of recent progress in "plasmonics". We focus our study on the observation and excitation of surface plasmon polaritons (SPPs) with optical near-field microscopy. We discuss in particular recent applications of photon scanning tunnelling microscope (PSTM) for imaging of SPP propagating in metal and dielectric wave guides. We show how near-field scanning optical microscopy (NSOM) can be used to optically and actively address remote nano objects such as quantum dots. Additionally we compare results obtained with near-field microcopy to those obtained with other optical far-field methods of analysis such as leakage radiation microscopy (LRM).  相似文献   

20.
We discuss theoretically the concept of spatial resolution in near-field scanning optical microscopy (NSOM) in light of a recent work [Opt. Express 17 (2009) 19969] which reported on the achievement of active tips made of a single ultrasmall fluorescent nanodiamond grafted onto the apex of a substrate tip and on their validation in NSOM imaging. Since fluorescent nanodiamonds tend to decrease steadily in size, we assimilate a nanodiamond-based tip to a point-like single photon source and compare its ultimate resolution with that offered by standard metal-coated aperture NSOM tips. We demonstrate both classically and quantum mechanically that NSOM based on a point-like tip has a resolving power that is only limited by the scan height over the imaged system whereas the aperture-tip resolution depends critically on both the scan height and aperture diameter. This is a consequence of the complex distribution of the electromagnetic field around the aperture that tends to artificially duplicate the imaged objects. We show that the point-like tip does not suffer from this “squint” and that it rapidly approaches its ultimate resolution in the near-field as soon as its scan height falls below the distance between the two nano-objects to be resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号