首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 nu (e) candidate events with energies above 3.4 MeV compared to 365.2+/-23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8+/-7.3 expected background events, the statistical significance for reactor nu (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from nu (e) oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2). A global analysis of data from KamLAND and solar-neutrino experiments yields Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2) and tan((2)theta=0.40(+0.10)(-0.07), the most precise determination to date.  相似文献   

2.
With IceCube and its low-energy extension DeepCore, a neutrino detector with an energy reach from tens of gigaelectronvolt to exaelectronvolt has been commissioned. It measures the atmospheric neutrino spectrum from the lower energies where neutrinos oscillate to energies as large as 100 TeV with a statistic of more than 100,000 events per year. The initial results suggest that IceCube can measure the oscillation parameters in an energy range that exceeds existing observations by 1 order of magnitude, thus opening a new window on neutrino physics. We emphasize the search for sterile neutrinos particularly relevant to cosmology. We also discuss the first observation of (PEV) petaelectronvolt-Energy events that cannot be accommodated by the flux anticipated by extrapolation of the present atmospheric neutrino measurements.  相似文献   

3.
We present results for nu(mu) oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced nu(mu) beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy-dependent disappearance of nu(mu), which we presume have oscillated to nu(tau). The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).  相似文献   

4.
We point out that neutrino events observed at Kamiokande and IMB from SN1987A disfavor the neutrino oscillation parameters preferred by the LSND experiment. For Δm2>0 (the light side), the electron neutrinos from the neutronization burst would be lost, while the first event at Kamiokande is quite likely to be due to an electron neutrino. For Δm2<0 (the dark side), the average energy of the dominantly events is already lower than the theoretical expectations, which would get aggravated by a complete conversion from to  . If taken seriously, the LSND data are disfavored independent of the existence of a sterile neutrino. A possible remedy is CPT violation, which allows different mass spectra for neutrinos and anti-neutrinos and hence can accommodate atmospheric, solar and LSND data without a sterile neutrino. If this is the case, Mini-BooNE must run in rather than the planned ν mode to test the LSND signal. We speculate on a possible origin of CPT violation.  相似文献   

5.
Debasish Majumdar 《Pramana》2002,58(1):L135-L145
We have analysed the solar neutrino data obtained from chlorine, gallium and Super-Kamiokande (SK) experiments (1258 days) and also the new results that came from Sudbury Neutrino Observatory (SNO) charge current (CC) and elastic scattering (ES) experiments considering that the solar neutrino deficit is due to the interaction of neutrino transition magnetic moment with the solar magnetic field. We have also analysed the moments of the spectrum of scattered electrons at SK. Another new feature in the analysis is that for the global analysis, we have replaced the spectrum by its centroid.  相似文献   

6.
We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed, and an upper limit of is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.  相似文献   

7.
A search for a nonzero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from Super-Kamiokande-I. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a nonzero neutrino magnetic moment. In the absence of a clear signal, we found micro(nu)相似文献   

8.
Experimental signatures of vacuum oscillations solution of the solar neutrino problem are considered. This solution predicts a strict correlation between a distortion of the neutrino energy spectrum and an amplitude of seasonal variations of the neutrino flux. The slope parameter which characterizes a distortion of the recoil electron energy spectrum in the Super-Kamiokande experiment and the seasonal asymmetry of the signal have been calculated in a wide range of oscillation parameters. The correlation of the slope and asymmetry gives crucial criteria for identification or exclusion of this solution. For the positive slope indicated by preliminary Super-Kamiokande data we predict (40 – 60) % enhancement of the seasonal variations.  相似文献   

9.
中微子振荡实验——超出标准模型的实验检验(Ⅰ)   总被引:3,自引:0,他引:3  
何景棠 《物理》2001,30(2):74-80
文章总结了中微子振荡实验在历史和现状,介绍了几个太阳中微子丢失实验的结果和几个大气μ中微子丢失实验结果,这些结果表明存在中微子振荡,即中微子具有质量,它是超出标准模型的信号,文章还介绍了21世纪初研究中微子振荡和若干重要实验,噬基线中微子振荡实验以及建造μ子贮存环来产生高能电子中微子束进行中微子振荡的实验以及测量中微子振荡时的CP破坏的设想。  相似文献   

10.
何景棠 《物理学进展》2001,21(2):216-224
本介绍中微子质量测量的历史和现状。介绍太阳中微子丢失实验的结果和大气μ中微子丢失实验结果。这些结果表明存在中微子振荡,即中微子具有质量。它是超出标准模型的信号。本还介绍了21世纪初研究中微子振荡的若干重要实验,例如长基线中微子振荡实验以及建造μ子 贮存环来产生高能电子中微子束进行中微子振荡的实验以及测量中微子振荡时的CP破坏的设想。  相似文献   

11.
Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.  相似文献   

12.
Parametric enhancement of the appearance probability of the neutrino oscillation under the inhomogeneous matter is studied. Fourier expansion of the matter density profile leads to a simple resonance condition and manifests that each Fourier mode modifies the energy spectrum of oscillation probability at around the corresponding energy; below the MSW resonance energy, a large-scale variation modifies the spectrum in high energies while a small-scale one does in low energies. In contrast to the simple parametric resonance, the enhancement of the oscillation probability is itself an slow oscillation as demonstrated by a numerical analysis with a single Fourier mode of the matter density. We derive an analytic solution to the evolution equation on the resonance energy, including the expression of frequency of the slow oscillation.  相似文献   

13.
Muon neutrino disappearance probability as a function of neutrino flight length L over neutrino energy E was studied. A dip in the L/E distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The observed L/E distribution constrained nu(micro)<-->nu(tau) neutrino oscillation parameters; 1.9x10(-3)0.90 at 90% confidence level.  相似文献   

14.
KamLAND and T2K     
KamLAND announced the first evidence of disappearance, followed by direct evidence for neutrino oscillation by observing distortion of the reactor energy spectrum, demonstrated almost two cycles of the periodic feature expected neutrino oscillation, and determined a precise value for the neutrino oscillation parameter and stringent constraints on θ12. KamLAND also succeeded in detecting geoneutrinos produced by natural radioactivities in the Earth. This detection allows better estimation of the abundances and distributions of radioactive elements in the Earth and of the Earth’s overall heat generation. In the J-PARC neutrino facility, T2K is ready for operation. T2K is supposed to give critical information, which guides the future direction of the neutrino physics. The current status of T2K is shown.  相似文献   

15.
Results for solar neutrino detection from the SuperKamiokande collaboration have been presented recently while those from the Sudbury Neutrino Observatory are expected in the near future. These experiments are sensitive to the8B neutrinos from the sun, the shape of whose spectrum is well-known but the normalization is less certain. We propose several variables, insensitive to the absolute flux of the incident beam, which probe the shape of the observed spectrum and can sensitively signal neutrino oscillations. They provide methods to extract the neutrino mixing angle and mass splitting from the data and also to distinguish oscillation to sequential neutrinos from those to a sterile neutrino.  相似文献   

16.
TEXONO合作组首次采用CsI(T1)晶体测量反应堆中微子的能量、通量和反常磁矩,描述了实验的基本原理,探测器结构及其性能.  相似文献   

17.
A magnetized Iron CALorimeter (ICAL) detector at the India-based neutrino observatory (INO) is used to study neutrino oscillation sensitivity using atmospheric muon neutrino source. The ICAL detector will be able to detect muon tracks and hadron showers produced by neutrino interactions with the iron target. We have performed precision measurement analysis for the atmospheric neutrino oscillation parameters with the muon neutrino events, generated by Monte Carlo NUANCE event generator. A marginalized χ2 analysis based on reconstructed neutrino energy and muon zenith angle binning scheme has been performed to determine the sensitivity for the atmospheric neutrino mixing parameters, \(\sin ^{2}\theta _{23}\) and \(| {\Delta } m^{2}_{23}|\).  相似文献   

18.
Reactor neutrino oscillation experiments, such as Daya Bay, Double Chooz and RENO are designed to determine the neutrino mixing angle θ13 with a sensitivity of 0.01--0.03 in sin2 2θ13 at 90% confidence level, an improvement over the current limit by more than one order of magnitude. The control of systematic uncertainties is critical to achieving the sin2 2θ13 sensitivity goal of these experiments. Antineutrinos emitted from spent nuclear fuel (SNF) would distort the soft part of energy spectrum and may introduce a non-negligible systematic uncertainty. In this article, a detailed calculation of SNF neutrinos is performed taking account of the operation of a typical reactor and the event rate in the detector is obtained. A further estimation shows that the event rate contribution of SNF neutrinos is less than 0.2% relative to the reactor neutrino signals. A global χ2 analysis shows that this uncertainty will degrade the θ13 sensitivity at a negligible level.  相似文献   

19.
Results from Super-Kamiokande-I’s entire 1496 live days of solar neutrino data are presented, including the absolute flux, energy spectrum, zenith angle (day/night) and seasonal variation. The possibility of MSW and vacuum oscillations is discussed in light of these results. Results from the first 1289 days of Super-K-I’s atmospheric neutrino analysis are also presented, including the evidence for νμν τ oscillations, against νμ → νsterile oscillations, and the current limits on proton decay. Finally, results based on 56 × 1019 protons on target are given for the K2K long-baseline neutrino oscillation experiment.  相似文献   

20.
Recent results on solar neutrino measurements are discussed. The results from radio-chemical experiments are briefly summarized. The new data from 1117 effective days of Super-Kamiokande shows that the spectrum shape agrees with that expected from the convoluted effect of the 8B-neutrino spectrum, the recoil electron spectrum of neutrino electron scattering and the detector responses and that there is a 3.4% difference between the day- and night-time fluxes, but statistically not significant. There is no strong smoking gun evidence for oscillation yet, however those precise measurements of the spectrum shape and day/night fluxes have given a constraint on the oscillation parameters, indicating at 95% confidence level that the large mixing angles solutions (MSW LMA and LOW) are preferable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号