首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 2-nitrophenyl isocyanide 2 with [M(CO)5(thf)] (M=Cr, Mo, W) yields the isocyanide complexes [M(CO)5(2)] (3: M=Cr; 4: M=Mo; 5: M=W). Complexes 3-5 react with elemental tin under reduction of the nitro function of the isocyanide ligand to give the complexes with the unstable 2-aminophenyl isocyanide ligand. The coordinated 2-aminophenyl isocyanide ligand in all three complexes reacts spontaneously under intramolecular nucleophilic attack of the primary amine at the isocyanide carbon atom to yield the complexes with the NH,NH-benzimidazol-2-ylidene ligand (6: M=Cr; 7: M=Mo; 8: M=W). An incomplete reduction of the nitro group in 3-5 is observed when hydrazine hydrate is used instead of tin. Here the formation of complexes with a coordinated 2-hydroxylamine-functionalized phenyl isocyanide [(CO)5M-CN-C6H(4-)-2-N(H)-OH] is postulated and this unstable ligand again undergoes intramolecular cyclization to give the NH,NOH-stabilized benzimidazol-2-ylidene complexes 9-11. The tungsten derivative 11 can be allylated stepwise by a deprotonation/alkylation sequence first at the OH and then at the NH position to yield the monoallylated and diallylated species 12 and 13. The molecular structures of 3-5 and 12-13 were established by X-ray crystallography.  相似文献   

2.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

3.
The reactions of doubly face-capped triruthenium cluster complexes of the type [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-R(2)CCHR(1))(mu-CO)(2)(CO)(6)] (HNNMe(2) = 1,1-dimethylhydrazide; R(2)CCHR(1) = alkenyl ligand) with terminal and internal alkynes have been studied in refluxing toluene. The following derivatives have been isolated from these reactions: [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-R(2)CCHR(1))(mu-kappa(2)-//-HCCH)(CO)(7)] (R(1) = R(2) = H, 5; R(1) = Ph, R(2) = H, 6; R(1) = CH(2)OMe, R(2) = H, 7 a; R(1) = H, R(2) = CH(2)OMe, 7 b) from acetylene, [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCH(2))(mu-kappa(2)-//-PhCCPh)(CO)(7)] (11) from diphenylacetylene, and three isomers of [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCH(2))(mu-kappa(2)-//-PhCCH)(CO)(7)] (14, 15 a, and 15 b) from phenylacetylene. These products result from substitution of a CO ligand by the alkyne and contain an Ru--Ru edge bridged by the alkyne ligand in a parallel manner. DFT calculations on selected isomeric products have helped to establish that the type of Ru--Ru edge bridged by the alkyne depends more on kinetic factors related to the size of the alkyne substituents than on the thermodynamic stability of the final products. The preparation of triruthenium cluster complexes with mu-//-alkyne ligands is unprecedented and seems to relate to the fact that the starting trinuclear complexes have their two triangular faces protected by capping ligands. The clusters bearing mu-//-acetylene (5-7) are thermodynamically unstable with respect to their transformation into edge-bridging vinylidene derivatives, [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCHR)(mu-kappa(1)-CCH(2))(CO)(7)] (R = H, 8; Ph, 9; CH(2)OMe, 10). DFT calculations have shown that complex 8 is 11.2 kcal mol(-1) more stable than its precursor 5. The thermolysis of compound 11 leads to [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu-kappa(4)-H(2)CCHCPhCPhCO)(mu-CO)(2)(CO)(5)] (12), which contains a novel edge-bridging dienoyl ligand that arises from an unusual coupling of diphenylacetylene, carbon monoxide, and the ethenyl ligand of complex 11. A chloro-bridged dimer of trinuclear clusters, [Ru(6)(mu-Cl)(2)(mu(3)-kappa(2)-HNNMe(2))(2)(mu(3)-kappa(2)-HCCH(2))(2)(mu-kappa(2)-PhCCHPh)(2)(mu-CO)(2)(CO)(10)] (13), has been prepared by treating compound 11 with hydrogen chloride. Therefore, edge-bridging parallel alkynes are susceptible to protonation to give edge-bridging alkenyl ligands. Compound 13 is the first complex to contain two alkenyl ligands on a trinuclear cluster, one face-capping and the other edge-bridging.  相似文献   

4.
The complexes [MBr(π-allyl)(CO)2(bipy)] (M = Mo, W, bipy = 2,2′-bipyridine) react with alkylxanthates (MIRxant), and N-alkyldithiocarbamates (MIRHdtc) (MI = Na or K), yielding complexes of general formula [M(S,S)- (π-allyl)(CO)2(bipy)] (M = Mo, (S,S) = Rxant (R = Me, Et, t-Bu, Bz), RHdtc (R = Me, Et); M = W, (S,S) = Extant). A monodentate coordentate coordination of the (S,S) ligand was deduced from spectral data. The reaction of [MoBr(π-allyl)(CO)2(bipy)] with MeHdtc and Mexant gives the same complexes whether pyridine is present or not. The complexes [Mo(S,S)(π-allyl)(CO)2(bipy)] ((S,S) = MeHdtc, Mexant) do not react with an excess of (S,S) ligand and pyridine.No reaction products were isolated from reaction of [MoBr(π-allyl)(CO)2(dppe)] with xanthates or N-alkyldithiocarbamates.  相似文献   

5.
[Pt(CSe3)(PR3)2] (PR3= PMe3, PMe2Ph, PPh3, P(p-tol)3, 1/2 dppp, 1/2 dppf) were all obtained by the reaction of the appropriate metal halide containing complex with carbon diselenide in liquid ammonia. Similar reaction with [Pt(Cl)2(dppe)] gave a mixture of triselenocarbonate and perselenocarbonate complexes. [{Pt(mu-CSe3)(PEt3)}4] was formed when the analogous procedure was carried out using [Pt(Cl)2(PEt3)2]. Further reaction of [Pt(CSe3)(PMe2Ph)2] with [M(CO)6] (M = Cr, W, Mo) yielded bimetallic species of the type [Pt(PMe2Ph)2(CSe3)M(CO)5] (M = Cr, W, Mo). The dimeric triselenocarbonate complexes [M{(CSe3)(eta5-C5Me5)}2] (M = Rh, Ir) and [{M(CSe3)(eta6-p-MeC6H4(i)Pr)}2] (M = Ru, Os) have been synthesised from the appropriate transition metal dimer starting material. The triselenocarbonate ligand is Se,Se' bidentate in the monomeric complexes. In the tetrameric structure the exocyclic selenium atoms link the four platinum centres together.  相似文献   

6.
Pentacarbonyl-7H-indenediiron, [Fe2(CO)5(eta3,eta5-C9H8)] (1), reacts with aryllithium, ArLi (Ar = C6H5, p-C6H5C6H4), followed by alkylation with Et3OBF4 to give novel 7H-indene-coordinated diiron bridging alkoxycarbene complexes [Fe2{mu-C(OC2H5)Ar}(CO)4(eta4,eta4-C9H8)] (2, Ar = C6H5; 3, Ar = p-C6H5C6H4). Complexes 2 and 3 react with HBF4.Et2O at low temperature to yield cationic bridging carbyne complexes [Fe2(mu-CAr)(CO)4(eta4,eta4-C9H8)]BF4 (4, Ar = C6H5; 5, Ar = p-C6H5C6H4). Cationic 4 and 5 react with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complexes [Fe2{mu-C(H)Ar}(CO)4(eta4,eta4-C9H8)] (6, Ar = C6H5; 7, Ar = p-C6H5C6H4). The similar reactions of 4 and 5 with NaSC6H4CH3-p produce the bridging arylthiocarbene complexes [Fe2{mu-C(Ar)SC6H4CH3-p}(CO)4(eta4,eta4-C9H8)] (8, Ar = C6H5; 9, Ar = p-C6H5C6H4). Cationic 4 and 5 can also react with anionic carbonylmetal compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to give the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [Fe2{mu-C(Ar)NCM(CO)5}(CO)4(eta4,eta4-C9H8)] (10, Ar = C6H5, M = Cr; 11, Ar = p-C6H5C6H4, M = Cr; 12, Ar = C6H5, M = Mo; 13, Ar = p-C6H5C6H4, M = Mo; 14, Ar = C6H5, M = W; 15, Ar = p-C6H5C6H4, M = W). Interestingly, in CH2Cl2 solution at room temperature complexes 10-15 were transformed into the isomerized 7H-indene-coordinated monoiron complexes [Fe(CO)2(eta5-C9H8)C(Ar)NCM(CO)5] (16, Ar = C6H5, M = Cr; 17, Ar = p-C6H5C6H4, M = Cr; 18, Ar = C6H5, M = Mo; 19, Ar = p-C6H5C6H4, M = Mo; 20, Ar = C6H5, M = W; 21, Ar = p-C6H5C6H4, M = W), while complex 3 was converted into a novel ring addition product [Fe2{C(OC2H5)C6H4C6H5-p-(eta2,eta5-C9H8)}(CO)5] (22) under the same conditions. The structures of complexes 2, 6, 8, 14, 18 and 22 have been established by X-ray diffraction studies.  相似文献   

7.
The metal complexes [M{HB(hpp)}(2)(CO)(4)] (M = Cr, Mo or W) and [M(cod){HB(hpp)}(2)Cl] (M = Rh or Ir) of the doubly-base stabilized diborane(4) ligand [HB(hpp)](2) were fully characterized and their bonding nature was investigated in detail. While bonding in the group 6 complexes predominantly occurs through the hydrogen atoms, the metal-ligand interaction in the group 9 complexes can be regarded as an early stage oxidative addition of the boron-boron bond leading to diboryl compounds.  相似文献   

8.
Novel dinuclear rhodium complexes of the general composition [Rh2Cl2(mu-CRR')2(mu-SbiPr3)] (4-6) were prepared by thermolysis of the mononuclear precursors trans-[RhCl(=CRR')(SbiPr3)2] in excellent yield. The X-ray crystal structure analysis of 4 (R = R' = Ph) confirms the symmetrical bridging position of the stibane ligand. Related compounds [Rh2Cl2(mu-CPh2)(mu-CRR')(mu-SbiPr3)] (7, 8) with two different carbene units were obtained either from trans-[RhCl(=CPh2)(SbiPr3)2] (1) and RR'CN2 or by a conproportionation of 4 and 5 (R = R' = p-Tol) or 4 and 6 (R= Ph, R' = p-Tol), respectively. While CO reacts with 4 to give the polymeric product [[RhCl(CPh2)(CO)]n] (9), tert-butyl isocyanide replaces the bridging stibane and yields [Rh2Cl2(mu-CPh2)2(mu-CNtBu)] (10). The reaction of 4 with tertiary phosphanes PR3 leads to complete bridge cleavage and affords the mononuclear compounds trans-[RhCl(=CPh2)(PR3)2] (11-15). In contrast, treatment of 4 with SbMe3 and SbEt3 yields the related triply bridged complexes [Rh2Cl2(mu-CPh2)2(mu-SbR3)] (16, 17) by substitution of SbiPr3 for the smaller stibanes. The displacement of the chloro ligands in 4-6 and 10 by n5-cyclopentadienyl gives the dinuclear complexes [(n5-C5H5)2Rh2(mu-CRR')2] (18-20) and [(n5-C5H5)2Rh2(mu-CPh2)2(mu-CNtBu)] (21), of which 18 (R = R' = Ph) was characterized crystallographically.  相似文献   

9.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

10.
Alkoxo complexes [Re(OR)(CO)(3)(N-N)] (R=Me, Et, tBu; N-N=2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'bipyridine (bipy'), 1,10-phenanthroline (phen)) and [M(OMe)(eta(3)-allyl)(CO)(2)(phen)] (M=Mo, W) have been synthesized in good yields and using mild conditions by the reaction of sodium alkoxides with [Re(OTf)(CO)(3)(N-N)] and [MCl(eta(3)-allyl)(CO)(2)(phen)] precursors. These have been characterized by IR and NMR spectroscopy as well as by X-ray diffraction for [W(OMe)(eta(3)-allyl)(CO)(2)(phen)] (10). The reactions of the molybdenum and rhenium alkoxo complexes with isocyanates, R'NCO, yield [L(n)M[N(R')C(O)OR]] complexes; the carbamate ligand, which results from an R'NCO insertion into the Mbond;OR bond, is monodentate through the nitrogen atom. The solid-state structures of Mo and Re examples have been determined by X-ray diffraction. The geometry around the carbamate nitrogen of these compounds is planar, and the distances indicate delocalization of the nitrogen lone pair involving mainly the carbonyl groups. Experiments carried out with the Re complexes showed that aryl isocyanates are more reactive than their alkyl counterparts, and that bulky R' groups led to slow rates of insertion. Insertion reactions were also observed with isothiocyanates, although here it is the Sbond;C bond that inserts into the Mbond;OR bond, and the resulting ligand is bound to the metal by sulfur. Competition experiments with the Re compounds indicate that isocyanates are more reactive than isothiocyanates towards the Rebond;OR bonds. Tetracyanoethylene inserts into the Rebond;OMe bond of [Re(OMe)(CO)(3)(bipy')], forming a complex with a 2-methoxytetracyanoethyl ligand; the structure of which was determined by X-ray diffraction. The formation of the xanthato complex [Re(SC(S)OtBu)(CO)(3)(bipy)] (20) by reaction of [Re(OTf)(CO)(3)(bipy)] with CS(2) and NaOtBu, but not by the reaction of CS(2) and [Re(OtBu)(CO)(3)(bipy)] (5 a), suggests that the insertion reactions do not take place by ionization of the alkoxo complexes to give the free alkoxide ion.  相似文献   

11.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   

12.
New mononuclear titanium and zirconium imido complexes [M(NR)(R'(2)calix)] [M=Ti, R'=Me, R=tBu (1), R=2,6-C(6)H(3)Me(2) (2), R=2,6-C(6)H(3)iPr(2) (3), R=2,4,6-C(6)H(2)Me(3) (4); M=Ti, R'=Bz, R=tBu (5), R=2,6-C(6)H(3)Me(2) (6), R=2,6-C(6)H(3)iPr(2) (7); M=Zr, R'=Me, R=2,6-C(6)H(3)iPr(2) (8)] supported by 1,3-diorganyl ether p-tert-butylcalix[4]arenes (R'(2)calix) were prepared in good yield from the readily available complexes [MCl(2)(Me(2)calix)], [Ti(NR)Cl(2)(py)(3)], and [Ti(NR)Cl(2)(NHMe(2))(2)]. The crystallographically characterised complex [Ti(NtBu)(Me(2)calix)] (1) reacts readily with CO(2), CS(2), and p-tolyl-isocyanate to give the isolated complexes [Ti[N(tBu)C(O)O](Me(2)calix)] (10), [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [Ti[N(tBu)C(O)N(-4-C(6)H(4)Me)](Me(2)calix)] (13). In the case of CO(2) and CS(2), the addition of the heterocumulene to the Ti-N multiple bond is followed by a cycloreversion reaction to give the dinuclear complexes 11 and 12. The X-ray structure of 13.4(C(7)H(8)) clearly establishes the N,N'-coordination mode of the ureate ligand in this compound. Complex 1 undergoes tert-butyl/arylamine exchange reactions to form 2, 3, [Ti(N-4-C(6)H(4)Me)(Me(2)calix)] (14), [Ti(N-4-C(6)H(4)Fc)(Me(2)calix)] (15) [Fc=Fe(eta(5)-C(5)H(5))(eta(5)-C(5)H(4))], and [[Ti(Me(2)calix)](2)[mu-(N-4-C(6)H(4))(2)CH(2)]] (16). Reaction of 1 with H(2)O, H(2)S and HCl afforded the compounds [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [TiCl(2)(Me(2)calix)] in excellent yields. Furthermore, treatment of 1 with two equivalents of phenols results in the formation of [Ti(O-4-C(6)H(4)R)(2)(Me(2)calix)] (R=Me 17 or tBu 18), [Ti(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (19) and [Ti(mbmp)(Me(2)calix)] (20; H(2)mbmp=2,2'-methylene-bis(4-methyl-6-tert-butylphenol) or CH(2)([CH(3)][C(4)H(9)]C(6)H(2)-OH)(2)). The bis(phenolate) compounds 17 and 18 with para-substituted phenolate ligands undergo elimination and/or rearrangement reactions in the nonpolar solvents pentane or hexane. The metal-containing products of the elimination reactions are dinuclear complexes [[Ti(O-4-C(6)H(4)R)(Mecalix)](2)] [R=Me (23) or tBu (24)] where Mecalix=monomethyl ether of p-tert-butylcalix[4]arene. The products of the rearrangement reaction are [Ti(O-4-C(6)H(4)Me)(2) (paco-Me(2)calix)] (25) and [Ti(O-4-C(6)H(4)tBu)(2)(paco-Me(2)calix)] (26), in which the metallated calix[4]arene ligand is coordinated in a form reminiscent of the partial cone (paco) conformation of calix[4]arene. In these compounds, one of the methoxy groups is located inside the cavity of the calix[4]arene ligand. The complexes 24, 25 and 26 have been crystallographically characterised. Complexes with sterically more demanding phenolate ligands, namely 19 and 20 and the analogous zirconium complexes [Zr(O-4-C(6)H(4)Me)(2)(Me(2)calix)] (21) and [Zr(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (22) do not rearrange. Density functional calculations for the model complexes [M(OC(6)H(5))(2)(Me(2)calix)] with the calixarene possessing either cone or partial cone conformations are briefly presented.  相似文献   

13.
The successive reaction of chromium and tungsten hexacarbonyl, (CO)6M (M = Cr, W), with [N=C(Ph)R] and [Et3O]BF4 yields the alkylideneamino(ethoxy)carbene complexes (CO)5M[C(OEt)N=C(Ph)R] (M = Cr (1), W (2); R = NMe2 (a), tBu (b)). Ethoxide abstraction from 1 and 2 affords 2-azoniaallenylidene complexes, {(CO)5M[CNC(Ph)R]}+BF4 (3/4). The complexes 3 and 4 are best described as resonance hybrids of several limiting structures. On the basis of the spectroscopic data of the complexes 3a and 4a the limiting structure of an iminium-substituted isocyanide complex dominates.  相似文献   

14.
[{mu-(Pyridazine-N(1):N(2))}Fe(2)(mu-CO)(CO)(6)](1) reacts with aryllithium reagents, ArLi (Ar = C(6)H(5), m-CH(3)C(6)H(4)) followed by treatment with Me(3)SiCl to give the novel pyridazine-coordinated diiron bridging siloxycarbene complexes [(C(4)H(4)N(2))Fe(2){mu-C(OSiMe(3))Ar}(CO)(6)](2, Ar = C(6)H(5); 3, Ar =m-CH(3)C(6)H(4)). Complex 2 reacts with HBF(4).Et(2)O at low temperature to yield a cationic bridging carbyne complex [(C(4)H(4)N(2))Fe(2)(mu-CC(6)H(5))(CO)(6)]BF(4)(4). Cationic 4 reacts with NaBH(4) in THF at low temperature to afford the diiron bridging arylcarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(H)C(6)H(5)}(CO)(6)](5). Unexpectedly, the reaction of 4 with NaSCH(3) under similar conditions gave the bridging arylcarbene complex 5 and a carbonyl-coordinated diiron bridging carbene complex [Fe(2){mu-C(SCH(3))C(6)H(5)}(CO)(7)](6), while the reaction of NaSC(6)H(4)CH(3)-p with 4 affords the expected bridging arylthiocarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(SC(6)H(4)CH(3)-p)C(6)H(5)}(CO)(6)](7), which can be converted into a novel diiron bridging carbyne complex with a thiolato-bridged ligand, [Fe(2)(mu-CC(6)H(5))(mu-SC(6)H(4)CH(3)-p)(CO)(6)](8). Cationic can also react with the carbonylmetal anionic compound Na(2)[Fe(CO)(4)] to yield complex 5, while the reactions of 4 with carbonylmetal anionic compounds Na[M(CO)(5)(CN)](M = Cr, Mo, W) produce the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [(C(4)H(4)N(2))Fe(2)-{mu-C(C(6)H(5))NCM(CO)(5)}(CO)(6)](9, M = Cr; 10, M = Mo; 11, M = W). The structures of complexes 2, 5, 6, 8, and 9 have been established by X-ray diffraction studies.  相似文献   

15.
The reaction of the ynediamine 1,2-dipiperidinoacetylene (1) with [(η(2)-COE)Cr(CO)(5)], [(THF)W(CO)(5)] and [RuCl(2)(η(6)-cymene)](2) afforded homobimetallic complexes 2a, 2b and 3, in which the diaminoacetylene 1 acts as a bis(aminocarbene) ligand by bridging two complex fragments Cr(CO)(5) (in 2a), W(CO)(5) (in 2b) and RuCl(2)(η(6)-cymene) (in 3). The reaction of 1 with [RuCl(2)(PPh(3))(3)] gave trans-[(1)RuCl(PPh(3))(2)]Cl, [4]Cl, in which the alkyne 1 coordinates as a 4-electron donor ligand. The cation 4 represents a rare example of a square-planar Ru(II) complex with a low-spin ground state (S = 0), and its stability can be ascribed to the strong alkyne-metal π-interaction as confirmed by DFT calculations. Treatment with one or two equivalents of NaBPh(4) in acetonitrile gave [4]BPh(4) and the dicationic [(1)Ru(PPh(3))(2)(CH(3)CN)(2)](BPh(4))(2), [5](BPh(4))(2). [4]Cl can be used for the preparation of heterobimetallic Ru-Pd bis(aminocarbene) complexes by reaction with [(MeCN)(2)PdCl(2)], resulting in the formation of bimetallic 6 and tetrametallic 7.  相似文献   

16.
The title complex (Cp = η(5)-C(5)H(5)) reacted with the labile carbonyl complexes [M(CO)(5)(THF)] (M = Cr, Mo, W) and [MnCp'(CO)(2)(THF)] (Cp' = η(5)-C(5)H(4)Me) to give phosphinidene-bridged trimetallic compounds of formula [Fe(2)MCp(2)(μ(3)-PCy)(μ-CO)(CO)(7)] (Cr-P = 2.479(1) ?) and [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(CO)(4)], respectively, after formation of a new M-P bond in each case, and related heterometallic complexes [Fe(2)MClCp(2)(μ(3)-PCy)(μ-CO)(CO)(2)] (M = Cu, Au; Au-P = 2.262(1) ?) were cleanly formed upon reaction with CuCl or the labile tetrahydrothiophene (THT) complex [AuCl(THT)]. The reaction with [Fe(2)(CO)(9)] proceeded analogously to give the triiron derivative [Fe(3)Cp(2)(μ(3)-PCy)(μ-CO)(CO)(6)] in high yield (new Fe-P bond =2.318(1) ?), along with a small amount of the pentanuclear compound [{Fe(CO)(3)}{(μ(3)-PCy)Fe(2)Cp(2)(μ-CO)(CO)(2)}(2)], the latter displaying a central Fe(CO)(3)P(2) core with a distorted bipyramidal geometry (P-Fe-P = 164.2(1)°). In contrast, the reaction with [Co(2)(CO)(8)] resulted in a full disproportionation process to give the salt [{Co(CO)(3)}{(μ(3)-PCy)Fe(2)Cp(2)(μ-CO)(CO)(2)}(2)][Co(CO)(4)], having a pentanuclear Fe(4)Co cation comparable to the above Fe(5) complex (P-Co-P = 165.3(2)°). The attempted photochemical decarbonylation of the above trinuclear complexes gave results strongly dependent on the added metal fragment. Thus, the irradiation with visible or visible-UV light of the new Fe(3) and Fe(2)Cr species caused no decarbonylation but a tautomerization of the metal framework to give the corresponding isomers [Fe(2)MCp(2)(μ(3)-PCy)(μ-CO)(CO)(n)] now exhibiting a dangling FeCp(CO)(2) moiety (M = Cr, n = 7, Cr-Fe = 2.7370(3) ?; M = Fe, n = 6, new Fe-Fe bond = 2.6092(9) ?) as a result of the cleavage of the Fe-Fe bond in the precursor and subsequent formation of a new M-Fe bond. These processes are reversible, since the new isomers gave back the starting complexes under low (Cr) or moderate (Fe) thermal activation. In contrast, the manganese-diiron complex [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(CO)(4)] could be decarbonylated stepwise, to give first the tetracarbonyl complex [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(2)(CO)(2)] and then the tricarbonyl cluster [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(3)], the latter having a closed triangular metal core (Fe-Fe = 2.568(7) ?; Mn-Fe = 2.684(8) and 2.66(1) ?).  相似文献   

17.
New benzo[h]quinoline ligands (HCN'N) containing a CHRNH2 (R=H (a), Me (b), tBu (c)) function in the 2-position were prepared starting from benzo[h]quinoline N-oxide (in the case of ligand a) and 2-chlorobenzo[h]quinoline (for ligands b and c). These compounds were used to prepare ruthenium and osmium complexes, which are excellent catalysts for the transfer hydrogenation (TH) of ketones. The reaction of a with [RuCl2(PPh3)3] in 2-propanol at reflux afforded the terdentate CN'N complex [RuCl(CN'N)(PPh3)2] (1), whereas the complexes [RuCl(CN'N)(dppb)] (2-4; dppb=Ph2P(CH2)4PPh2) were obtained from [RuCl2(PPh3)(dppb)] with a-c, respectively. Employment of (R,S)-Josiphos, (S,R)-Josiphos*, (S,S)-Skewphos, and (S)-MeO-Biphep in combination with [RuCl2(PPh3)3] and ligand a gave the chiral derivatives [RuCl(CN'N)(PP)] (5-8). The osmium complex [OsCl(CN'N)(dppb)] (12) was prepared by treatment of [OsCl2(PPh3)3] with dppb and ligand a. Reaction of the chloride 2 and 12 with NaOiPr in 2-propanol/toluene afforded the hydride complexes [MH(CN'N)(dppb)] (M=Ru 10, Os 14), through elimination of acetone from [M(OiPr)(CN'N)(dppb)] (M=Ru 9, Os 13). The species 9 and 13 easily reacted with 4,4'-difluorobenzophenone, via 10 and 14, respectively, affording the corresponding isolable alkoxides [M(OR)(CN'N)(dppb)] (M=Ru 11, Os 15). The complexes [MX(CN'N)(P2)] (1-15) (M=Ru, Os; X=Cl, H, OR; P=PPh3 and P2=diphosphane) are efficient catalysts for the TH of carbonyl compounds with 2-propanol in the presence of NaOiPr (2 mol %). Turnover frequency (TOF) values up to 1.8x10(6) h(-1) have been achieved using 0.02-0.001 mol % of catalyst. Much the same activity has been observed for the Ru--Cl, --H, --OR, and the Os--Cl derivatives, whereas the Os--H and Os--OR derivatives display significantly lower activity on account of their high oxygen sensitivity. The chiral Ru complexes 5-8 catalyze the asymmetric TH of methyl-aryl ketones with TOF approximately 10(5) h(-1) at 60 degrees C, up to 97 % enatiomeric excess (ee) and remarkably high productivity (0.005 mol % catalyst loading). High catalytic activity (TOF up to 2.2x10(5) h(-1)) and enantioselectivity (up to 98 % ee) have also been achieved with the in-situ-generated catalysts prepared from [MCl2(PPh3)3], (S,R)-Josiphos or (S,R)-Josiphos*, and the benzo[h]quinoline ligands a-c.  相似文献   

18.
Novel neutral and cationic Rh(I) and Ir(I) complexes that contain only DMSO molecules as dative ligands with S-, O-, and bridging S,O-binding modes were isolated and characterized. The neutral derivatives [RhCl(DMSO)(3)] (1) and [IrCl(DMSO)(3)] (2) were synthesized from the dimeric precursors [M(2)Cl(2)(coe)(4)] (M=Rh, Ir; COE=cyclooctene). The dimeric Ir(I) compound [Ir(2)Cl(2)(DMSO)(4)] (3) was obtained from 2. The first example of a square-planar complex with a bidentate S,O-bridging DMSO ligand, [(coe)(DMSO)Rh(micro-Cl)(micro-DMSO)RhCl(DMSO)] (4), was obtained by treating [Rh(2)Cl(2)(coe)(4)] with three equivalents of DMSO. The mixed DMSO-olefin complex [IrCl(cod)(DMSO)] (5, COD=cyclooctadiene) was generated from [Ir(2)Cl(2)(cod)(2)]. Substitution reactions of these neutral systems afforded the complexes [RhCl(py)(DMSO)(2)] (6), [IrCl(py)(DMSO)(2)] (7), [IrCl(iPr(3)P)(DMSO)(2)] (8), [RhCl(dmbpy)(DMSO)] (9, dmbpy=4,4'-dimethyl-2,2'-bipyridine), and [IrCl(dmbpy)(DMSO)] (10). The cationic O-bound complex [Rh(cod)(DMSO)(2)]BF(4) (11) was synthesized from [Rh(cod)(2)]BF(4). Treatment of the cationic complexes [M(coe)(2)(O=CMe(2))(2)]PF(6) (M=Rh, Ir) with DMSO gave the mixed S- and O-bound DMSO complexes [M(DMSO)(2)(DMSO)(2)]PF(6) (Rh=12; Ir=in situ characterization). Substitution of the O-bound DMSO ligands with dmbpy or pyridine resulted in the isolation of [Rh(dmbpy)(DMSO)(2)]PF(6) (13) and [Ir(py)(2)(DMSO)(2)]PF(6) (14). Oxidative addition of hydrogen to [IrCl(DMSO)(3)] (2) gave the kinetic product fac-[Ir(H)(2)Cl(DMSO)(3)] (15) which was then easily converted to the more thermodynamically stable product mer-[Ir(H)(2)Cl(DMSO)(3)] (16). Oxidative addition of water to both neutral and cationic Ir(I) DMSO complexes gave the corresponding hydrido-hydroxo addition products syn-[(DMSO)(2)HIr(micro-OH)(2)(micro-Cl)IrH(DMSO)(2)][IrCl(2)(DMSO)(2)] (17) and anti-[(DMSO)(2)(DMSO)HIr(micro-OH)(2)IrH(DMSO)(2)(DMSO)][PF(6)](2) (18). The cationic [Ir(DMSO)(2)(DMSO)(2)]PF(6) complex (formed in situ from [Ir(coe)(2)(O=CMe(2))(2)]PF(6)) also reacts with methanol to give the hydrido-alkoxo complex syn-[(DMSO)(2)HIr(micro-OCH(3))(3)IrH(DMSO)(2)]PF(6) (19). Complexes 1, 2, 4, 5, 11, 12, 14, 17, 18, and 19 were characterized by crystallography.  相似文献   

19.
The previously reported hexanuclear cluster [Pt(6)(mu-PtBu(2))(4)(CO)(6)](2+)[Y](2) (1-Y(2): Y=CF(3)SO(3) (-)) contains a central Pt(4) tetrahedron bridged at each of the opposite edges by another platinum atom; in turn, four phosphido ligands bridge the four Pt-Pt bonds not involved in the tetrahedron, and, finally, one carbonyl ligand is terminally bonded to each metal centre. Interestingly, the two outer carbonyls are more easily substituted or attacked by nucleophiles than the inner four, which are bonded to the tetrahedron vertices. In fact, the reaction of 1-Y(2) with 1 equiv of [nBu(4)N]Cl or with an excess of halide salts gives the monochloride [Pt(6)(mu-PtBu(2))(4)(CO)(5)Cl](+)[Y], 2-Y, or the neutral dihalide derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)X(2)] (3: X=Cl; 4: X=Br; 5: X=I). Moreover, the useful unsymmetrically substituted [Pt(6)(mu-PtBu(2))(4)(CO)(4)ICl] (6) was obtained by reacting equimolar amounts of 2 and [nBu(4)N]I, and the dicationic derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)L(2)](2+)[Y](2) (7-Y(2): L=(13)CO; 8-Y(2): L=CNtBu; 9-Y(2): L=PMe(3)) were obtained by reaction of an excess of the ligand L with 1-Y(2). Weaker nitrogen ligands were introduced by dissolving the dichloride 3 in acetonitrile or pyridyne in the presence of TlPF(6) to afford [Pt(6)(mu-PtBu(2))(4) (CO)(4)L(2)](2+)[Z](2) (Z=PF(6) (-), 10-Z(2): L=MeCN; 11-Z(2): L=Py). The "apical" carbonyls in 1-Y(2) are also prone to nucleophilic addition (Nu(-): H(-), MeO(-)) affording the acyl derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)(CONu)(2)] (12: Nu=H; 13: Nu=OMe). Complex 12 is slowly converted into the dihydride [Pt(6)(mu-PtBu(2))(4)(CO)(4)H(2)] (14), which was more cleanly prepared by reacting 3 with NaBH(4). In a unique case we observed a reaction involving also the inner carbonyls of complex 1, that is, in the reaction with a large excess of the isocyanides R-NC, which form the corresponding persubstituted derivatives [Pt(6)(mu-tPBu(2))(4)(CN-R)(6)](2+)[Y](2), (15-Y(2): R=tBu; 16-Y(2) (2-): R=-C(6)H(4)-4-C triple bond CH). All complexes were characterized by microanalysis, IR and multinuclear NMR spectroscopy. The crystal and molecular structures of complexes 3, 5, 6 and 9-Y(2) are also reported. From the redox viewpoint, all complexes display two reversible one-electron reduction steps, the location of which depends both upon the electronic effects of the substituents, and the overall charge of the original complex.  相似文献   

20.
Reaction of the neutral P(H)NP ligand [HN(SiMe(2)CH(2)PPh(2))(2)] with tungsten hexacarbonyl resulted in coordination of P(H)NP through both phosphorus donor atoms to form the tungsten complex [W(P(HN)P)(CO)(4)] (1). Reaction of P(H)NP with tris(acetonitrile)tricarbonyl tungsten gave both facial and meridional tridentate isomers [W(P(H)NP)(CO)(3)] (2-fac and 3-mer). These three d(6) tungsten complexes could be interconverted under appropriate conditions. The thermodynamically favored isomer 3 was protonated to form seven-coordinate [W(P(H)NP)(CO)(3)H][BF(4)] (4). A related series of cationic tungsten(ii) halide complexes was synthesized, [W(P(H)NP)(CO)(3)X](+) (6, X = I; 7, X = Br; 8, X = Cl; 9, X = F), by various routes. All of the tungsten(ii) complexes underwent deprotonation at the amine site of the P(H)NP ligand when triethylamine was added, resulting in neutral seven-coordinate complexes. Variable temperature (1)H, (31)P{(1)H}, and (13)C{(1)H} NMR spectroscopy showed fluxional behavior for all the seven-coordinate complexes reported here. Analysis of IR and NMR spectroscopic data showed trends through the series of coordinated halides. Crystal structures of tetracarbonyl 1, meridional tricarbonyl 3, and cationic hydride 4 were determined to confirm the coordination mode of the P(H)NP ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号