首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

2.
Interaction of PdCl(2)(MeCN)(2) with 2 equiv of (S(P))-(t)BuPhP(O)H (1H) followed by treatment with Et(3)N gave [Pd((1)(2)H)](2)(micro-Cl)(2) (2). Reaction of 2 with Na[S(2)CNEt(2)] or K[N(PPh(2)S)(2)] afforded Pd[(1)(2)H](S(2)CNEt(2)) (3) or Pd[(1)(2)H)[N(PPh(2)S)(2)] (4), respectively. Treatment of 3 with V(O)(acac)(2) (acac = acetylacetonate) and CuSO(4) in the presence of Et(3)N afforded bimetallic complexes V(O)[Pd(1)(2)(S(2)CNEt(2))](2) (5) or Cu[Pd(1)(2)(S(2)CNEt(2))](2) (6), respectively. X-ray crystallography established the S(P) configuration for the phosphinous acid ligands in 3 and 6, indicating that 1H binds to Pd(II) with retention of configuration at phosphorus. The geometry around Cu in 6 is approximately square planar with the average Cu-O distance of 1.915(3) A. Treatment of 2 with HBF(4) gave the BF(2)-capped compound [Pd((1)(2)BF(2))](2)(micro-Cl)(2) (7). The solid-state structure of 7 containing a PdP(2)O(2)B metallacycle has been determined. Chloride abstraction of 7 with AgBF(4) in acetone/water afforded the aqua compound [Pd((1)(2)BF(2))(H(2)O)(2)][BF(4)] (8) that reacted with [NH(4)](2)[WS(4)] to give [Pd((1)(2)BF(2))(2)](2)[micro-WS(4)] (9). The average Pd-S and W-S distances in 9 are 2.385(3) and 2.189(3) A, respectively. Treatment of [(eta(6)-p-cymene)RuCl(2)](2) with 1H afforded the phosphinous acid adduct (eta(6)-p-cymene)RuCl(2)(1H) (10). Reduction of [CpRuCl(2)](x)() (Cp = eta(5)-C(5)Me(5)) with Zn followed by treatment with 1H resulted in the formation of the Zn(II) phosphinate complex [(CpRu(eta(6)-C(6)H(5)))(t)BuPO(2))](2)(ZnCl(2))(2) (11) that contains a Zn(2)O(4)P(2) eight-membered ring.  相似文献   

3.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaL(OEt) (L(OEt) (-)=[(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) afforded the mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(2)(mu-SO(4))] (2). In more concentrated sulfuric acid (>1 M), the same reaction yielded the di-mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(mu-SO(4))(2)] (3). Reaction of 2 with HOTf (OTf=triflate, CF(3)SO(3)) gave the tris(triflato) complex [L(OEt)Ti(OTf)(3)] (4), whereas treatment of 2 with Ag(OTf) in CH(2)Cl(2) afforded the sulfato-capped trinuclear complex [{(L(OEt))(3)Ti(3)(mu-O)(3)}(mu(3)-SO(4)){Ag(OTf)}][OTf] (5), in which the Ag(OTf) moiety binds to a mu-oxo group in the Ti(3)(mu-O)(3) core. Reaction of 2 in H(2)O with Ba(NO(3))(2) afforded the tetranuclear complex (L(OEt))(4)Ti(4)(mu-O)(6) (6). Treatment of 2 with [{Rh(cod)Cl}(2)] (cod=1,5-cyclooctadiene), [Re(CO)(5)Cl], and [Ru(tBu(2)bpy)(PPh(3))(2)Cl(2)] (tBu(2)bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(L(OEt))(2)Ti(2)(O)(2)(SO(4)){Rh(cod)}(2)][OTf](2) (7), [(L(OEt))(2)Ti(O)(2)(SO(4)){Re(CO)(3)}][OTf] (8), and [{(L(OEt))(2)Ti(2)(mu-O)}(mu(3)-SO(4))(mu-O)(2){Ru(PPh(3))(tBu(2)bpy)}][OTf](2) (9), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 mu(B). Treatment of zirconyl nitrate with NaL(OEt) in 3.5 M sulfuric acid afforded [(L(OEt))(2)Zr(NO(3))][L(OEt)Zr(SO(4))(NO(3))] (10). Reaction of ZrCl(4) in 1.8 M sulfuric acid with NaL(OEt) in the presence Na(2)SO(4) gave the mu-sulfato-bridged complex [L(OEt)Zr(SO(4))(H(2)O)](2)(mu-SO(4)) (11). Treatment of 11 with triflic acid afforded [(L(OEt))(2)Zr][OTf](2) (12), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{L(OEt)Zr(SO(4))(H(2)O)}(3)(mu(3)-SO(4))][OTf] (13). The Zr(IV) triflato complex [L(OEt)Zr(OTf)(3)] (14) was prepared by reaction of L(OEt)ZrF(3) with Me(3)SiOTf. Complexes 4 and 14 can catalyze the Diels-Alder reaction of 1,3-cyclohexadiene with acrolein in good selectivity. Complexes 2-5, 9-11, and 13 have been characterized by X-ray crystallography.  相似文献   

4.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

5.
Cyclodiphosphazanes having hemilabile ponytails such as cis-[(t)()BuNP(OC(6)H(4)OMe-o)](2) (2), cis-[(t)()BuNP(OCH(2)CH(2)OMe)](2) (3), cis-[(t)BuNP(OCH(2)CH(2)SMe)](2) (4), and cis-[(t)BuNP(OCH(2)CH(2)NMe(2))](2) (5) were synthesized by reacting cis-[(t)()BuNPCl](2) (1) with corresponding nucleophiles. The reaction of 2 with [M(COD)Cl(2)] afforded cis-[MCl(2)(2)(2)] derivatives (M = Pd (6), Pt (7)), whereas, with [Pd(NCPh)(2)Cl(2)], trans-[MCl(2)(2)(2)] (8) was obtained. The reaction of 2 with [Pd(PEt(3))Cl(2)](2), [{Ru(eta(6)-p-cymene)Cl(2)](2), and [M(COD)Cl](2) (M = Rh, Ir) afforded mononuclear complexes of Pd(II) (9), Ru(II) (11), Rh(I) (12), and Ir(I) (13) irrespective of the stoichiometry of the reactants and the reaction condition. In the above complexes the cyclodiphosphazane acts as a monodentate ligand. The reaction of 2 with [PdCl(eta(3)-C(3)H(5))](2) afforded binuclear complex [(PdCl(eta(3)-C(3)H(5)))(2){((t)BuNP(OC(6)H(4)OMe-o))(2)-kappaP}] (10). The reaction of ligand 3 with [Rh(CO)(2)Cl](2) in 1:1 ratio in CH(3)CN under reflux condition afforded tetranuclear rhodium(I) metallamacrocycle (14), whereas the ligands 4 and 5 afforded bischelated binuclear complexes 15 and 16, respectively. The crystal structures of 8, 9, 12, 14, and 16 are reported.  相似文献   

6.
Disulfide-bridged dinuclear ruthenium complexes [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-X)(mu,eta(2)-S(2))][ZnX(3)(MeCN)] (X = Cl (2), Br (4)), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(2)(mu,eta(1)-S(2))](CF(3)SO(3)) (5), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(2)-S(2))](BF(4)) (6), and [[Ru(MeCN)(2)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(1)-S(2))](CF(3)SO(3))(3) (7) were synthesized, and the crystal structures of 2 and 4 were determined. Crystal data: 2, triclinic, P1, a = 15.921(4) A, b = 17.484(4) A, c = 8.774(2) A, alpha = 103.14(2) degrees, beta = 102.30(2) degrees, gamma = 109.68(2) degrees, V = 2124(1) A(3), Z = 2, R (R(w)) = 0.055 (0.074); 4, triclinic, P1 a = 15.943(4) A, b = 17.703(4) A, c = 8.883(1) A, alpha = 102.96(2) degrees, beta = 102.02(2) degrees, gamma = 109.10(2) degrees, V = 2198.4(9) A(3), Z = 2, R (R(w)) = 0.048 (0.067). Complexes 2 and 4 were obtained by reduction of the disulfide-bridged ruthenium complexes [[RuX(P(OMe)(3))(2)](2)(mu-X)(2)(mu,eta(1)-S(2))] (X = Cl (1), Br (3)) with zinc, respectively. Complex 5 was synthesized by oxidation of 2 with AgCF(3)SO(3). Through these redox steps, the coordination mode of the disulfide ligand was converted from mu,eta(1) in 1 and 3 to mu,eta(2) in 2 and 4 and further reverted to mu,eta(1) in 5. Electrochemical studies of 6 indicated that similar conversion of the coordination mode occurs also in electrochemical redox reactions.  相似文献   

7.
Reaction of the [arachno-4-NB(8)H(12)](-) anion with [RhCl(2)(eta(5)-C(5)Me(5))](2) in CH(2)Cl(2) at room temperature affords a mixture of red '6,9' isomer [9-(eta(5)-C(5)Me(5))-nido-6,9-NRhB(8)H(11)] () and its yellow '6,8' isomer, [8-(eta(5)-C(5)Me(5))-nido-6,8-NRhB(8)H(11)] (). Under the same conditions, reactions of with [IrCl(2)(eta(5)-C(5)Me(5))](2) and [RuCl(2)(eta(6)-MeC(6)H(4)-4-(iso)Pr)](2) give the '6,8' isomers, yellow [8-(eta(5)-C(5)Me(5))-nido-6,8-NIrB(8)H(11)] () and red [8-(eta(6)-MeC(6)H(4)-4-(iso)Pr)-nido-6,8-NRuB(8)H(11)] (), respectively. In contrast, [IrCl(PPh(3))(3)] yields orange [9,9-(PPh(3))(2)-9-H-nido-6,9-NIrB(8)H(11)] (), which exhibits the '6,9' configuration. Compound isomerizes quantitatively in solution to give . At high temperatures, compound gives the yellow '6,8' species, [8,8-(PPh(3))(2)-8-H-nido-6,8-NIrB(8)H(11)] (), in low yields. Possible mechanisms for the unprecedented 6,9 --> 6,8 isomerization are discussed.  相似文献   

8.
Five salts, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)).CH(2)Cl(2), [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O, have been crystallized and examined by single crystal X-ray diffraction. While the internal structure of the cation is similar in all salts, the interactions between cations vary in the different salts. Yellow [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH and red [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)) form face-to-face dimers with Pt...Pt separations of 3.6617(6) and 3.340(2) A, respectively. In the latter, hydrogen bonding of the chelating ligand to adjacent anions facilitates the close approach of pairs of cations. The salts [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O form columnar structures with Pt...Pt separations that range from 3.2514(5) to 3.5643(6) A. The water molecules and anions surround these columns and form bridges between neighboring columns. The electronic spectra of aqueous solutions of [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O show spectral changes upon increasing concentrations of the platinum complex that are indicative of the formation of a dimer in solution with an equilibrium constant for dimerization of 23(1).  相似文献   

9.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

10.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

11.
A series of tin(II) amido complexes possessing m-terphenyl carboxylate ligands have been prepared. These complexes, namely [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Ph(3))](2), [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(3)Mes(2))](2), and [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Mes(2)Me)](2) [Mes = 2,4,6-trimethylphenyl], are the first structurally characterized examples of tin(II) carboxylate complexes exhibiting discrete Sn(2)O(4)C(2) heterocyclic cores. Initial reactivity studies led to the isolation of a 1,3-diaza-2,4-distannacyclobutanediyl, [(Mes(2)C(6)H(3)CO(2))Sn(mu-NSiMe(3))](2). This molecule possesses a Sn(2)N(2) heterocyclic core and it was crystallised as both the CH(2)Cl(2) and Et(2)O solvates. Although the tin atoms in this molecule have a formal oxidation state of 3+, preliminary computational studies on this molecule suggest that it is best described as a ground state singlet. Finally, the X-ray crystal structure of (CH(2)Cl)(Cl)Sn[N(SiMe(3))(2)](2), the product of oxidative addition of CH(2)Cl(2) to Sn[N(SiMe(3))(2)](2), is also presented herein.  相似文献   

12.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

13.
The substitution of the mu-acetato ligands in cis-Re(2)(mu-O(2)CCH(3))(2)Cl(2)(mu-dppm)(2) (1, dppm = Ph(2)PCH(2)PPh(2)) and trans-Re(2)(mu-O(2)CCH(3))(2)Cl(2)(mu-dppE)(2) (2, dppE = Ph(2)PC(=CH(2))PPh(2)) by [4-Ph(2)PC(6)H(4)CO(2)](-) occurs with retention of stereochemistry to give cis-Re(2)(mu-O(2)CC(6)H(4)-4-PPh(2))(2)Cl(2)(mu-dppm)(2) (3) and trans-Re(2)(mu-O(2)CC(6)H(4)-4-PPh(2))(2)Cl(2)(mu-dppE)(2) (6), respectively. The uncoordinated phosphine groups in complexes 3 and 6 have been used to form mixed-metal assemblies with Au(I) and Pd(II), including the Re(2)Pd(2) complex cis-Re(2)(mu-O(2)CC(6)H(4)-4-PPh(2))(2)Cl(2)(mu-dppm)(2)(Pd(2)Cl(4)) (5), in which the planar [(P)ClPd(mu-Cl)(2)PdCl(P)] unit has the unusual cis structure. The crystal structures of 3 and 5 have been determined.  相似文献   

14.
A series of ruthenium complexes was isolated and characterized in the course of reactions aimed at studying the reduction of hydrazine to ammonia in bimetallic systems. The diruthenium complex {[HPNPRu(N(2))](2)(μ-Cl)(2)}(BF(4))(2) (2) (HPNP = HN(CH(2)CH(2)P(i)Pr(2))(2)) reacted with 1 equiv of hydrazine to generate [(HPNPRu)(2)(μ(2)-H(2)NNH(2))(μ-Cl)(2)](BF(4))(2) (3) and with an excess of the reagent to form [HPNPRu(NH(3))(κ(2)-N(2)H(4))](BF(4))Cl (5). When phenylhydrazine was added to 2, the diazene species [(HPNPRu)(2)(μ(2)-HNNPh)(μ-Cl)(2)](BF(4))(2) (4) was obtained. Treatment of 2 with H(2) or CO yielded {[HPNPRu(H(2))](2)(μ-Cl)(2)}(BF(4))(2) (7) and [HPNPRuCl(CO)(2)]BF(4) (8), respectively. Abstraction of chloride using AgOSO(2)CF(3) or AgBPh(4) afforded the species [(HPNPRu)(2)(μ(2)-OSO(2)CF(3))(μ-Cl)(2)]OSO(2)CF(3) (9) and [(HPNPRu)(2)(μ-Cl)(3)]BPh(4) (10), respectively. Complex 3 reacted with HCl/H(2)O or HCl/Et(2)O to produce ammonia stoichiometrically; the complex catalytically disproportionates hydrazine to generate ammonia.  相似文献   

15.
Interaction of [Ce(L(OEt))(2)(NO(3))(2)] (L(OEt)(-) = [Co(eta(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with (NH(4))(6)[Mo(7)O(24)] in water affords the cerium(iv)-containing oxomolybdenum cluster [H(4)(CeL(OEt))(6)Mo(9)O(38)], which exhibits a unique Ce(6)Mo(9)O(38) core structure.  相似文献   

16.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

17.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

18.
A family of novel titanasiloxanes containing the structural unit {[Ti(eta(5)-C(5)Me(5))O](3)} were synthesized by hydron-transfer processes involving reactions with equimolecular amounts of mu(3)-alkylidyne derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu(3)-CR)] (R=H (1), Me (2)) and monosilanols, R(3)'Si(OH), silanediols, R(2)'Si(OH)(2), and the silanetriol tBuSi(OH)(3). Treatment of 1 and 2 with triorganosilanols (R'=Ph, iPr) in hexane affords the new metallasiloxane derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-CHR)(OSiR(3)')] (R=H, R'=Ph (3), iPr (4); R=Me, R'=Ph (5), iPr (6)). Analogous reactions with silanediols, (R'=Ph, iPr), give the cyclic titanasiloxanes [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(2)SiR'(2))(R)] (R=Me, R'=Ph (7), iPr (8); R=Et, R'=Ph (9), iPr (10)). Utilization of tBuSi(OH)(3) with 1 or 2 at room temperature produces the intermediate complexes [{Ti(eta(5)-C(5)Me(5)) (mu-O)}(3)(mu-O(2)Si(OH)tBu)(R)] (R=Me (11), Et(12)). Further heating of solutions of 11 or 12 affords the same compound with an adamantanoid structure, [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(3)SitBu)] (13) and methane or ethane elimination, respectively. The X-ray crystal structures of 3, 4, 6, 8, 10, 12, and 13 have been determined. To gain an insight into the mechanism of these reactions, DFT calculations have been performed on the incorporation of monosilanols to the model complex [{Ti(eta(5)-C(5)H(5))(mu-O)}(3)(mu(3)-CMe)] (2 H). The proposed mechanism consists of three steps: 1) hydron transfer from the silanol to one of the oxygen atoms of the Ti(3)O(3) ring, forming a titanasiloxane; 2) intramolecular hydron migration to the alkylidyne moiety; and 3) a mu-alkylidene ligand rotation to give the final product.  相似文献   

19.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

20.
Several cyanogold complexes react with the binuclear nickel complex [(Ni(dien)(H(2)O))(2)(mu-ox)](PF(6))(2).2H(2)O to give the compounds [(Ni(dien)(H(2)O))(2)(mu-ox)]Br(2) (1), [(Ni(dien)(Au(CN)(2)))(2)(mu-ox)] (2), and [(Ni(dien))(2)(mu-ox)(mu-Au(CN)(4))](PF(6)) (3) (dien, diethilenetriamine; ox, oxalate). In the case of compounds 2 and 3, water displacement by the corresponding cyanogold complex takes place, whereas compound 1 is formed by a substitution of the anion. The crystal structures of compounds 1 and 2 present a 2D arrangement where the layers are connected by van der Waals forces (1) or N-H.Ntbd1;C hydrogen bonds (2), where each binuclear complex is hydrogen bonded to its neighbors, whereas compound 3 presents a novel structure where the tetracyanoaurate acts as a bridging ligand to give a polymeric compound. Magnetic studies of these compounds reveal an antiferromagnetic behavior. Finally, density functional theory (DFT) calculations have been performed on isolated models of compounds 2 and 3 in order to gain some insight about the different behavior of the [Au(CN)(2)](-) and [Au(CN)(4)](-) groups as ligands and proton acceptors in hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号