首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work a set of experimental data points is used to study some scaling properties of Miesowicz coefficients. Using the fact that all the compounds studied present two critical points—the crystal–nematic and the nematic–isotropic phase transitions—a common temperature scale was defined. With the use of this unique temperature scale two relevant aspects that distinguish the viscosity of these materials can be simultaneously extracted and studied: (1) the molecular shape anisotropy and (2) the different strengths of molecular interaction of the different compounds. Through the study of the scaling properties associated with these properties, the existence of a common law connecting the Miesowicz coefficients with the associated decay time is proposed.  相似文献   

2.
Abstract

The phase diagram of a two component system composed of two smectic compounds: 4-octyloxy-4′-cyanobiphenyl (8OCB) and 4-isothiocyanatophenyl 4-butylbenzoate (4TPB) was investigated. Three Miesowicz viscosity coefficients η1, η2, η3 and the refractive indices at different temperatures as well as the enthalpies of the phase transitions were measured. It was stated, that the properties of the induced nematic phase, for example, the nematic phase existing between two smectic regions, are the same as the ones observed in the case of low viscosity nematic mesogens.  相似文献   

3.
K. Czupry&#x  ski  J. Janik  J. K. Mo   cicki 《Liquid crystals》1993,14(5):1371-1375
The phase diagram of a two component system composed of two smectic compounds: 4-octyloxy-4'-cyanobiphenyl (8OCB) and 4-isothiocyanatophenyl 4-butylbenzoate (4TPB) was investigated. Three Miesowicz viscosity coefficients η1, η2, η3 and the refractive indices at different temperatures as well as the enthalpies of the phase transitions were measured. It was stated, that the properties of the induced nematic phase, for example, the nematic phase existing between two smectic regions, are the same as the ones observed in the case of low viscosity nematic mesogens.  相似文献   

4.
5.
In this work, a scaling concept based on relaxation theories of the liquid state was combined with a relation previously proposed by the authors to provide a general framework describing the dependency of viscosity on pressure and temperature. Namely, the viscosity-pressure coefficient (partial differentialeta/partial differentialp)T was expressed in terms of a state-independent scaling exponent, gamma. This scaling factor was determined empirically from viscosity versus Tvgamma curves. New equations for the pressure- and temperature-viscosity coefficients were derived, which are of considerable technological interest when searching for appropriate lubricants for elastohydrodynamic lubrication. These relations can be applied over a broad range of thermodynamic conditions. The fluids considered in the present study are linear alkanes, pentaerythritol ester lubricants, polar liquids, associated fluids, and several ionic liquids, compounds selected to represent molecules of different sizes and with diverse intermolecular interactions. The values of the gamma exponent determined for the fluids analyzed in this work range from 1.45 for ethanol to 13 for n-hexane. In general, the pressure-viscosity derivative is well-reproduced with the values obtained for the scaling coefficient. Furthermore, the effects of volume and temperature on viscosity can be quantified from the ratio of the isochoric activation energy to the isobaric activation energy, Ev/Ep. The values of gamma and of the ratio Ev/Ep allow a classification of the compounds according to the effects of density and temperature on the behavior of the viscosity.  相似文献   

6.
Casalini and Roland [Phys. Rev. E 69, 062501 (2004); J. Non-Cryst. Solids 353, 3936 (2007)] and other authors have found that both the dielectric relaxation times and the viscosity, η, of liquids can be expressed solely as functions of the group (TV?(γ)), where T is the temperature, V is the molar volume, and γ a state-independent scaling exponent. Here we report scaling exponents γ, for the viscosities of 46 compounds, including 11 ionic liquids. A generalization of this thermodynamic scaling to other transport properties, namely, the self-diffusion coefficients for ionic and molecular liquids and the electrical conductivity for ionic liquids is examined. Scaling exponents, γ, for the electrical conductivities of six ionic liquids for which viscosity data are available, are found to be quite close to those obtained from viscosities. Using the scaling exponents obtained from viscosities it was possible to correlate molar conductivity over broad ranges of temperature and pressure. However, application of the same procedures to the self-diffusion coefficients, D, of six ionic and 13 molecular liquids leads to superpositioning of poorer quality, as the scaling yields different exponents from those obtained with viscosities and, in the case of the ionic liquids, slightly different values for the anion and the cation. This situation can be improved by using the ratio (D∕T), consistent with the Stokes-Einstein relation, yielding γ values closer to those of viscosity.  相似文献   

7.
A joint theoretical and experimental study of the electronic and structural properties of liquid crystalline metal-free phthalocyanines bearing a strong potential for charge and exciton transport has been performed. The synthesis of such compounds has been triggered by quantum chemical calculations showing that: (i) hole transport is favored in metal-free phthalocyanines by their extremely low reorganization energy (0.045 eV) and large electronic splittings; and (ii) the efficiency of energy transfer along the one-dimensional discotic stacks is weakly affected by rotational disorder due to the two-dimensional character of the molecules. We have synthesized two metal-free phthalocyanines with different branched aliphatic chains on the gram scale to allow for a full characterization of their solid-state properties. The two compounds self-organize in liquid crystalline mesophases, as evidenced by optical microscopy, differential scanning calorimetry, X-ray powder diffraction, and molecular dynamics simulations. They exhibit a columnar rectangular mesophase at room temperature and a columnar hexagonal mesophase at elevated temperature.  相似文献   

8.
The aggregation‐induced emission (AIE) properties of two different copper iodide clusters have been studied. These two [Cu4I4L4] clusters differ by their coordinated phosphine ligand and the luminescent mechanochromic properties are only displayed by one of them. The two clusters are AIE‐active luminophors that exhibit an intense emission in the visible region upon aggregation. The formed particles present luminescent thermochromism comparable to that of the bulk compounds. The observed AIE properties can be attributed to suppression of nonradiative relaxation of the excited states in a more rigid state, in relation to the large structural relaxation of the excited triplet state. The differences observed in the AIE properties of the two clusters can be related to the different ligands. A correlation between the luminescence mechanochromic properties and the AIE effect is not straightforward, but the formation of “soft” molecular solids is a common characteristic that can explain the photoactive properties of these compounds.  相似文献   

9.
A nematic fluid is characterized by five friction coefficients. When dilute polymer coils are added to the fluid, all these coefficients are modified. Three Miesowicz viscosities (measured under an aligning magnetic field) and two coupling coefficients between orientation and flow are discussed. In our calculation, elastic dumbbells are used to model the flexible polymer chains. The results are written in terms of two size parameters R and R and two chain friction coefficients λ and λ (the label ∥ refers to a direction parallel to the nematic axis). This could be compared to other experiments (such as translational diffusion) which measure λ and directly. They may give useful estimates of coil conformation in nematic solvents.  相似文献   

10.
The scaling equation is the most popular mathematical modeling of asphaltene precipitation as a problematic issue in petroleum industry. There are eight adjustable coefficients in the scaling equation that govern the quality of the fit between titration data and the scaling equation model. In this study, a hybrid genetic algorithm-pattern search (GA-PS) tool was employed to extract optimal values of the involved coefficients in the scaling equation through the stochastic search. For better performance of the GA-PS tool, dimensionality of the problem was broken into two simpler parts using the divide-and-conquer principle by introducing two fitness functions. The renovated scaling equation was compared with previous works; it was shown that the proposed method outperforms previous works.   相似文献   

11.
We used molecular dynamics computer simulations to test an approximate scaling principle that conjectures that two equilibrium atomic liquids have very similar dynamical properties if they have the same density and similar static pair correlation functions when the length scales of the two liquids are adjusted appropriately, even if they have different interatomic potentials and different temperatures. The simulations were performed on two types of model atomic liquids at various temperatures at the same density. In the first type, the interatomic potential is the Lennard-Jones potential (LJ). In the second type, the interatomic potential is the repulsive part of the Lennard-Jones potential (RLJ). We identified pairs of systems that have very similar pair correlation functions despite the fact that they had different potentials. Each pair consisted of an LJ liquid at a specific temperature and a corresponding RLJ liquid at a lower temperature. We compared various time correlation functions and transport coefficients of the two systems in each pair. Many dynamical properties are very similar in each pair, in accordance with the approximate scaling principle, whereas others are significantly different. The results indicate that certain dynamical properties are very insensitive to large changes in the interatomic potential that leave the pair correlation function largely unchanged, whereas other dynamical properties are much more sensitive to such changes in the potential. The transport coefficients for diffusion and viscosity are among the dynamical properties that are insensitive to such changes in the potential, and this may be part of the reason transport properties of many fluids have been calculated or rationalized in terms of a simple hard sphere model of liquids.  相似文献   

12.
Dynamic viscoelastic properties of poly(vinyl chloride) (PVC)/bis(2-ethylhexyl) phthalate (DOP) and PVC/di-n-butyl sebacate (DBS) gels with molecular weight distribution (Mw/Mn), of 2.16 and various polymer concentrations c, have been studied as a function of temperature. These PVC gels exhibited an elastic solid at room temperature T, and gradually became liquid (sol) with increasing temperature. The sol-gel transition took place at a critical gel temperature at which the scaling law of G′(ω) ∼ G″(ω) ∝ ωn held, allowing an accurate determination of the critical gel temperature by means of the frequency ω independence of the loss tangent. In this study the scaling exponent n, was 0.75–0.77. This is in good agreement with the previous results observed at different temperatures and suggests the formation of a similar fractal structure of the PVC gels. The gel strength Sg, at the gel point increased with increasing PVC concentration. These results suggest a unique character and structure for the gel points of PVC-plasticizers.  相似文献   

13.
Measurements of the magneto-optical Cotton—Mouton effect at 632.8 nm of O2(3Σ) over a range of temperature (≈299–464 K) and pressure (up to 613 kPa) are reported and analysed. The study enables a useful comparison to be made of data obtained under different conditions by the two groups that have undertaken systematic measurements of this effect. Agreement between the experimental results and also the derived molecular properties is found to be satisfactory.  相似文献   

14.
This paper reports on an experimental and theoretical study of the aromatic ester solvents family. Several compounds were selected to analyze the different factors that influence their liquid-state properties and structures. The pressure-volume-temperature behavior of these fluids was measured accurately over wide temperature and pressure ranges and correlated successfully with the empirical TRIDEN equation. From the measured data the relevant derived coefficients of isothermal compressibility, isobaric expansibility, and internal pressure were calculated. The statistical associating fluid theory (SAFT) and perturbed chain statistical associating fluid theory (PC-SAFT) molecularly based equations of state were used to predict the PVT behavior with model parameters obtained from the correlation of available saturation literature data; the results provided by PC-SAFT equations of state were clearly superior for all of the studied solvents. The fluid's molecular level structure was studied by quantum computations at the B3LYP/6-311++g** level and classical molecular dynamics simulations in the NPT ensemble with the OPLS-AA forcefield. Molecular parameters, such as torsional barriers or cluster energetics, were analyzed as a function of ester structures. The molecular dynamics study provides, on one hand, theoretical values of thermophysical properties, which are compared with the experimental ones, and, on the other hand, valuable molecular level structural information. On the basis of both macroscopic and microscopic studies complex fluid structures were inferred with important effects arising from the geometries of the studied molecules and from the existence of remarkable intermolecular forces of dominating dipolar nature.  相似文献   

15.
Second-harmonic generation (SHG) in the nematic phase of bent-core oxadiazole-based liquid crystals (LCs) was studied and compared to that for the rod-like compound 4-cyano-4?-n-octylbiphenyl (8CB). Weak, isotropically scattered second-harmonic (SH) light was observed for all materials, consistent with SHG by nematic director fluctuations. The SH intensity produced by the bent-core materials was found to be up to ~ 3.4 times that of 8CB. We discuss this result in terms of the dependence of SH intensity on temperature, elastic constants and flexoelectric coefficients. We have calculated the latter by using a molecular field approach with atomistic modelling, thus demonstrating how molecular parameters contribute to the flexoelectric coefficients and illustrating the potential of this method for predicting the flexoelectric behaviour of bent-core LCs. We show that the increased SH signal in the bent-core compounds is partly due to their nematic phases being at a much higher temperature, and also potentially due to them having greater flexoelectric coefficients, up to ~1.5 times those of 8CB. These estimates are consistent with reports of increased flexoelectric coefficients in bent-core compounds in comparison to rod-like compounds.  相似文献   

16.
In this work, a general equation of state (EOS) recently derived by Grzybowski et al. [Phys. Rev. E 83, 041505 (2011)] is applied to 51 molecular and ionic liquids in order to perform density scaling of pVT data employing the scaling exponent γ(EOS). It is found that the scaling is excellent in most cases examined. γ(EOS) values range from 6.1 for ammonia to 13.3 for the ionic liquid [C(4)C(1)im][BF(4)]. These γ(EOS) values are compared with results recently reported by us [E. R. López, A. S. Pensado, M. J. P. Comu?as, A. A. H. Pádua, J. Fernández, and K. R. Harris, J. Chem. Phys. 134, 144507 (2011)] for the scaling exponent γ obtained for several different transport properties, namely, the viscosity, self-diffusion coefficient, and electrical conductivity. For the majority of the compounds examined, γ(EOS) > γ, but for hexane, heptane, octane, cyclopentane, cyclohexane, CCl(4), dimethyl carbonate, m-xylene, and decalin, γ(EOS) < γ. In addition, we find that the γ(EOS) values are very much higher than those of γ for alcohols, pentaerythritol esters, and ionic liquids. For viscosities and the self-diffusion coefficient-temperature ratio, we have tested the relation linking EOS and dynamic scaling parameters, proposed by Paluch et al. [J. Phys. Chem. Lett. 1, 987-992 (2010)] and Grzybowski et al. [J. Chem. Phys. 133, 161101 (2010); Phys. Rev. E 82, 013501 (2010)], that is, γ = (γ(EOS)/φ) + γ(G), where φ is the stretching parameter of the modified Avramov relation for the density scaling of a transport property, and γ(G) is the Gru?neisen constant. This relationship is based on data for structural relaxation times near the glass transition temperature for seven molecular liquids, including glass formers, and a single ionic liquid. For all the compounds examined in our much larger database the ratio (γ(EOS)/φ) is actually higher than γ, with the only exceptions of propylene carbonate and 1-methylnaphthalene. Therefore, it seems the relation proposed by Paluch et al. applies only in certain cases, and is really not generally applicable to liquid transport properties such as viscosities, self-diffusion coefficients or electrical conductivities when examined over broad ranges of temperature and pressure.  相似文献   

17.
Environmental stress cracking (ESC) is a common phenomenon that affects commercially available polymeric materials exposed to liquid agents under external loading, and it is one of the most common causes of their unexpected long-term failure. In this study, ESC behavior of high crystalline polypropylene (HCPP) was studied through modified notched constant tensile load testing using two different scent oils as environmental agents. The relationship between total lifetime of the material and initial stress intensity factor was determined. Despite the similar molecular structures of the scent oils, they caused a remarkable lifetime difference for the material within a certain loading range. Swelling tests were also conducted in order to define diffusion coefficients for the scent oils without any loading. From these results, the diffusion coefficients for the two scent oils into the HCPP were modeled according to the initial stress intensity factor.  相似文献   

18.
The effects of scaling on the mechanical response under tension of balanced nonsymmetrical laminates were investigated for a thermoplastic composite: Polypropylene reinforced with Twaron® fibers. The composite baseline was an 8-ply laminate which consisted of unidirectional plies arranged in the sequence [±45/0/±45/0/±45]. The influence of specimen size on the tensile properties was studied for one (thickness), two (in-plane) and three (volume) dimensional scaling. The stress-strain curves suggested some variation in laminate behavior owing to the dimensional scaling; nevertheless, a further analysis with the classical lamination theory demonstrated that the observed effect was due to small variations in the fiber volume fraction of the laminates. It was concluded that the mechanical properties of these thermoplastic laminates do not exhibit scaling effects. The failure mechanism of the laminates was studied at macroscopic level; a scale effect of the fracture mechanism was observed.  相似文献   

19.
Data precision in the analysis by purge-and-trap coupled on-line to gas chromatography–mass spectrometry (P&T-GC–MS) of honey volatiles has been studied by statistical analysis. The contribution of non-random factors to dispersion of quantitative results was proven by comparing several statistical parameters (correlation coefficients, principal component analysis (PCA) eigenvalues and loadings) from both experimental and simulated data. PCA was also useful for grouping volatiles with similar dispersion behaviour; these groups being generally related to compounds with common properties or structural features. The use of area ratios improves data precision for compounds within the same group. Results from this study could be used for a better selection of internal standards in quantitative analysis of volatiles by P&T-GC–MS.  相似文献   

20.
《印度化学会志》2023,100(5):100969
The binary organic liquid mixture of geranyl acetate + benzyl benzoate was taken at different mole fractions and various temperatures 303.15K, 308.15K, 313.15K and 318.15K and measured their density, ultrasonic sound velocity and viscosity. Data from experiments were used to calculate variations in binary systems at different temperatures regarding excess acoustic parameters. Variations in ultrasonic velocity, intermolecular free length, and adiabatic compressibility were among these. To estimate the coefficients and standard errors for the excess/deviation functions, multi-parametric non-linear regression analysis was used to fit a Redlich-Kister polynomial with the calculated excess/deviation functions. Changes in these properties with temperature and composition have been investigated in the molecular interactions between the molecules of the binary mixtures. FTIR spectra also support the results. Furthermore, liquid mixtures and individual compounds were studied for their antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号